
IoT Based Smart Food Monitoring System for

Fridge

This project is submitted in partial fulfillment of the requirement for the degree

of Bachelor of Science in Computer Science & Engineering.

Arjon Das

ID: 1304016

Supervised by

Professor Dr. Mohammed Moshiul Hoque

Department of Computer Science & Engineering (CSE)

Chittagong University of Engineering & Technology (CUET)

Department of Computer Science & Engineering

Chittagong University of Engineering & Technology

Chittagong-4349, Bangladesh.

December, 2018

The project titled “IoT Based Smart Food Monitoring System for

Fridge” submitted by ID No. 1304016, Session 2016-2017 has been accepted as

satisfactory in fulfillment of the requirement for the degree of Bachelor of Science

in Computer Science & Engineering (CSE) as B.Sc. Engineering to be awarded

by the Chittagong University of Engineering & Technology (CUET).

Board of Examiners

1. Chairman

Dr. Mohammed Moshiul Hoque (Supervisor)

Professor

Department of Computer Science & Engineering (CSE)

Chittagong University of Engineering & Technology (CUET)

2. Member

Dr. Mohammad Shamsul Arefin (Ex-o�cio)

Professor and Head of the Department

Department of Computer Science & Engineering (CSE)

Chittagong University of Engineering & Technology (CUET)

3. Member

Dr. Mohammad Shamsul Arefin (External)

Professor and Head of the Department

Department of Computer Science & Engineering (CSE)

Chittagong University of Engineering & Technology (CUET)

i

Statement of Originality

It is hereby declared that the contents of this project is original and any part

of it has not been submitted elsewhere for the award of any degree or diploma.

Signature of the Supervisor Signature of the Candidate

ii

Acknowledgement

First of all, I would like to thank the Almighty for successful completion of

this project. The satisfaction that accompanies the successful completion of this

project would be incomplete without the mention of people whose ceaseless co-

operation made it possible, whose constant guidance and encouragement crown

all e↵orts with success. I convey my humble gratitude to my respectful project

supervisor Dr. Mohammed Moshiul Hoque, Professor, Department of Computer

Science and Engineering, Chittagong University of Engineering and Technology,

for his valuable advice and sincere guidance throughout my project work. I con-

vey special thanks and gratitude to Dr. Mohammad Shamsul Arefin, Head of

the Department of Computer Science and Engineering, Chittagong University of

Engineering and Technology, for his encouragement and cooperation. I want to

express my gratitude to all my respected teachers of the department. I would

like to thank all my friends and the sta↵s of the department for their valuable

help. Finally, I would like to thank my family for their constant love and support

during my study period.

iii

Abstract

Smart Food Monitoring System is an ecosystem of various hardware and software

aiming towards automated monitoring of food or other edible object. Internet

of Things is an open and complete network of intelligent objects that can be

leveraged for extensive monitoring. Hence Smart Food Monitoring System based

on IoT can provide verities of commercial, industrial and household benefits.

The proposed system suggests systematic use of sensors to perform refrigerator

environment quality and food quantity. The system can monitor refrigerator

environment via temperature sensor, tell amount of inventory via weight sensor

and produce visual feedback of the refrigerator storage using a camera housed

inside. By harnessing the power the of IoT technology the system will enable the

user to get notified when there is shortage of food or the fridge is not cooling the

food enough in which case active user can take immediate preventive measures.

Food management in homes as well as restaurants, and cold storages with the

help of these of system that monitors the quantity and generates alerts, hence

proactively controls wastage and inventory all through the comfort of users mobile

device. The Smart Food Monitoring System will lookup for food at best e�ciency

and fast response to notify the user any where anytime. The system also stores

valuable temperature data of long interval so that the user can examine the

temperature curve of the refrigerator to see if the food is preserved at the right

optimal temperature. The system can achieve these level of performance via

dedicated server for the logics and modern sensor unit driven by Raspberry Pi

micro controller and the data is sent to the user via user mobile application which

is simple and intuitive to use for the purpose it is built for.

iv

Contents

Acknowledgement iii

Abstract iv

1 Introduction 1

1.1 Introduction . 1

1.2 Traditional Food Refrigeration System 2

1.3 Motivation . 3

1.4 Challenges . 4

1.5 Contribution of the Work . 4

1.6 Organization of the Report . 5

2 Literature Review 6

2.1 Internet of Things . 6

2.2 REST API . 7

2.3 Common Devices and Softwares for Smart Food Monitoring System 8

2.3.1 Raspberry Pi . 8

2.3.2 GPIO Ports . 9

2.3.3 DHT22 Temperature and Humidity Sensor 9

2.3.4 Load Cell and HX711 . 11

2.3.5 Node.js . 11

2.3.6 MongoDB . 12

2.3.7 Socket.IO . 12

2.3.8 Python . 13

2.3.9 Swift . 13

2.4 Related Work . 13

v

2.4.1 A Food Monitoring System Based on Bluetooth Low En-

ergy and Internet of Things 14

2.4.2 iTrack: IoT Framework for Smart Food Monitoring System 14

2.4.3 RFID Based Smart Fridge 15

2.4.4 Design of Smart RFID Tag System for Food Poisoning In-

dex Monitoring . 15

2.4.5 Samsung Family Hub Refrigerator 16

2.4.6 Design and Implementation of Food Monitoring System

Based on WSN . 16

2.4.7 A Survey on Monitoring and Control system for Food Stor-

age using IoT . 16

3 System Architecture and Design 17

3.1 Architecture of the Smart Food Monitoring System 17

3.1.1 Server Architecture . 18

3.1.2 User Application Architecture 20

3.1.3 Database Design . 20

3.1.4 Sensor Unit Workflow . 21

4 System Implementation 23

4.1 Implementation Tools . 23

4.2 Circuit Connection . 24

4.3 Peripheral Connection . 25

4.4 Application User Interface . 26

4.5 Experiments . 26

4.5.1 Experiment Environment 27

4.5.2 Experimental Setup . 27

4.5.3 Experiment Procedure . 29

4.5.4 Evaluation Methods . 30

4.5.5 Evaluation Measures . 31

4.5.6 Results . 32

4.6 Discussion . 37

vi

5 Conclusion 38

5.1 Conclusion . 38

5.2 Future Recommendations . 39

Appendices 42

A Source Code 43

vii

List of Figures

1.1 Smart Food Monitoring System embedded on a refrigerator 3

2.1 Basic IoT Model . 7

2.2 Raspberry Pi 3 B+ . 9

2.3 Raspberry Pi 3 B+ GPIO Port 10

2.4 DHT22 Temperature and Humidity Sensor 10

2.5 HX711 ADC Load Cell Amplifier 11

2.6 Block Diagram for Food Monitoring System Based on Bluetooth

Low Energy and Internet of Things 14

2.7 Proposed iTrack Solution . 15

3.1 System Architecture of the Smart Food Monitoring System 18

3.2 Server Architecture . 19

3.3 User Application Architecture . 20

3.4 ER Diagram of SFMS . 21

3.5 Workflow of the Sensor unit . 22

4.1 Sensor Unit circuit consisting Raspberry Pi and Sensors 25

4.2 Peripheral Connection with the Raspberry Pi 25

4.3 User Application Interface 1 . 26

4.4 User Application Interface 2 . 27

4.5 Camera and Temperature sensor setup 28

4.6 Weight Sensor Setup . 28

4.7 Initial Setup parameters on User Application 30

4.8 Comparison of Temperature readings over time 33

4.9 Comparison of Weight readings over time 34

4.10 Notification response time of the system 35

viii

4.11 Load Camera Feedback option providing image of refrigerator in-

ventory . 36

4.12 Notification sent from the server to user about temperature and

inventory warning . 36

4.13 Temperature Data option providing temperature history on graph

representation . 37

ix

List of Tables

4.1 Temperature readings from commercial thermometer and our system 32

4.2 Weight readings from commercial weighting scale and our system 33

4.3 Notification response time of the system 34

x

Listings

A.1 server.js . 43

A.2 authenticate.js . 55

A.3 pinger.py . 56

A.4 AppDelegate.swift . 60

A.5 Socket.swift . 71

A.6 PanelViewController.swift . 78

xi

Chapter 1

Introduction

1.1 Introduction

The Internet of Things or IoT is the next frontier in technology. It is the ability

for things that contain embedded technologies to sense, communicate, interact,

and collaborate with other things, thus creating a network of physical objects.

IoT is an open and comprehensive network of intelligent objects that have the

capacity to auto-organize, share information, data and resources, reacting and

acting in face of situations and changes in the environment. IoT is maturing and

continues to be the latest, most hyped concept in the IT world. The IoT aims to

unify everything in our world under a common infrastructure, giving us not only

control of things around us, but also keeping us informed of the state of the things.

Over the last decade the term IoT has attracted attention by projecting the

vision of a global infrastructure of networked physical objects, enabling anytime,

anyplace connectivity for anything and not only for any one [1]. IoT describes

a world where just about anything can be connected and communicates in an

intelligent fashion than ever before. In these era of technology advancement,

everything requires monitoring and controlling. And harvesting the power of

modern technology to monitor food can make a real di↵erence in preventing food

waste. By properly monitoring the foods in fridge it is possible to maintain the

quality of the food to its best. Traditional fridges dont come with any sort of

food monitoring system. Thats why users remotely dont get to know whats inside

their fridge. Analyzing the quality of food storage environment by examining

temperature inside a fridge is crucial for better food quality. IoT technology can

help such action to be more intuitive. Food monitoring has become essential

these days as more and more food is being wasted just by storing them in excess

in the refrigerator and thrown away when they are expired. These leads to both

environmental and economical impact. Only if an automated system that can help

to notify the inventories about scarce product, remotely monitoring the foods and

assessing refrigeration performance can help to reduce food wastage. The idea

of connecting home appliances through the internet is regarded as a phenomenal

idea. Because if these home appliances can provide extensive functionality which

can be accessed by anyone over the internet with proper authentication. Food

management in homes as well as restaurants, and cold storage’s with the help

of these sort of system that monitors the quantity and generates alerts, hence

proactively controls wastage and inventory all through the comfort of users mobile

device. The system has to be intuitive so that the user can use the features at

ease rather than feeling that the it is another gimmick.

1.2 Traditional Food Refrigeration System

Refrigeration has become an essential part of the food chain. It is used in all stages

of the chain, from food processing, to distribution, retail and final consumption in

the home. Foods tend to have a very little amount of time before degrading and

losing the nutrient values but due to refrigeration of foods the chemical process

of food degradation has been prolonged. Cold temperatures help food stay fresh

longer. The basic idea behind traditional refrigeration is to slow down the activity

of bacteria which all food contains so that it takes longer for the bacteria to spoil

the food. The ideal temperature for food refrigeration is 4�C at which point micro

organisms tend to slow down food breakdown process [2]. As the food degradation

is prolonged due to the process less and less preservatives are needed for the

foods, thus making them more healthy. Food refrigeration technique provides

access to healthy food with high nutrition contents. These single innovation

plays crucial role in provide healthy and nutritious food to people worldwide.

Both the food industry and household refrigerator employs both chilling and

freezing processes where the food is cooled from ambient to temperatures above

2

0�C in the former and between -18�C and -35�C in the latter to slow the physical,

microbiological and chemical activities that cause deterioration in foods. It is

possible to transform the traditional refrigerator into a smart food monitoring

system by housing the sensor modules and proper internet connectivity. Figure

1.1 portraits the basic scenario who the system is embedded on a traditional

refrigerator.

Figure 1.1: Smart Food Monitoring System embedded on a refrigerator

1.3 Motivation

Food refrigeration process is a quite mature process which has been shaped by

the food industry for some decades so how can such system have any complica-

tion. Now a days one of the main problems addressed for refrigeration systems is

actually wastage of food due to way more prolonged storage of food than they are

intended to be. In developed countries up to 30 percent of household food ends

in the bin, often after storing them in the fridge and misconceptions about food

safety and exaggerated disgust. Sometime due to lack of extensive monitoring of

the storage environment specially in the cold storage industries huge amount of

food tends to rot for not getting acquainted by the cause. Again one of the main

reasons of food ending up in the bin is lack of food supply knowledge or whats in

3

the fridge. So many consumers waste food because they dont know whats in their

fridge during their grocery shopping and these problem further elevates because

in most households there is usually one or two food buyers. Food refrigeration

systems dont provide such get acquainted of these informations. In its current

stage food refrigeration system needs to incorporate a monitoring system so that

consumers can assess whats inside the fridge. So many refrigerators fail to main-

tain the optimal refrigeration temperature. Thats why the monitoring system

should also provide an extensive view of the internal food storage environment so

the consumer can assess the refrigerator performance because many food start to

deteriorate rapidly due to bad refrigeration.

1.4 Challenges

Developing a IoT based Food Monitoring System can be challenging due to the

fact that some of the components of the systems will be exposed to the low tem-

perature environment of the refrigerator, which is initially fine but at sudden

temperature rise that could cause water condensation on the electric compo-

nents that can damage the system. Inventory monitoring via load sensor can be

challenging as load sensors dont provide stable readings in noisy environments

and often requires to calibrate the load sensors. Creating real time communica-

tion between the user application and the device application via server is also

troublesome as it requires complex socket connections. And keeping the socket

connections alive during user application idle mode is challenging because mo-

bile operating systems tend to kill any sort of network connectivity when the

application goes to an idle mode to conserve power.

1.5 Contribution of the Work

The main objective of this project is to develop a system to monitor foods in

the refrigerators in real time based on IoT technology. The key objectives and

possible outcomes of our project may identify as following:

• To assess the quantity of food and provide timely notification for restocking.

4

• To provide visual feedback of foods to user via mobile device when re-

quested.

• To provide internal temperature monitoring feature to check optimal tem-

perature.

1.6 Organization of the Report

The entire report is represented in six di↵erent chapters. We can outline the

report structure as follows:

• Chapter 1 give an overview of IoT and refrigeration systems and discusses

about the motivation behind this project. It also lists the objective of the

project and challenges we may face in this work.

• Chapter 2 discusses about some technologies we have used in this project.

It also give an overview of some previous works done in this sector and

discuss their strength and limitation.

• Chapter 3 describe logical structure and architecture of our system.

• Chapter 4 describe implementation details of the system.

• Chapter 5 discusses the experimentation process and resulting outcomes of

our system.

• Chapter 6 presents the conclusion and future research scope in this field.

5

Chapter 2

Literature Review

In these chapter we will discuss about general terms and technologies we used in

our project. We will discuss some technical jargons and the techniques associated

with the technologies. We will also discuss about previous work done in this field

together with their merits and limitation.

2.1 Internet of Things

The Internet of Things is a novel paradigm shift in IT arena. The phrase In-

ternet of Things which is also shortly well-known as IoT is coined from the two

words i.e. the first word is Internet and the second word is Things. The Internet

of Things can also be considered as a global network which allows the commu-

nication between human-to-human, human-to-things and things-to-things, which

is anything in the world by providing unique identity to each and every object [3].

IoT describes a world where just about anything can be connected and com-

municates in an intelligent fashion that ever before. Most of us think about being

connected in terms of electronic devices such as servers, computers, tablets, tele-

phones and smart phones [4]. In whats called the Internet of Things, sensors and

actuators embedded in physical objectsfrom roadways to pacemakersare linked

through wired and wireless networks, often using the same Internet IP that con-

nects the Internet. These networks churn out huge volumes of data that flow to

computers for analysis. When objects can both sense the environment and com-

municate, they become tools for understanding complexity and responding to it

swiftly. Whats revolutionary in all this is that these physical information systems

are now beginning to be deployed, and some of them even work largely without

human intervention. The Internet of Things refers to the coding and networking

of everyday objects and things to render them individually machine-readable and

traceable on the Internet. Figure 2.1 portraits a basic model of IoT system.

Figure 2.1: Basic IoT Model

2.2 REST API

A REST API also referred to as a REST web service is based on representa-

tional state transfer (REST) technology, an architectural style and approach to

communications often used in web services development. It uses HTTP requests

to GET, PUT, POST and DELETE data. The REST used by browsers can be

thought of as the language of the internet. With cloud use on the rise, APIs are

emerging to expose web services. REST is a logical choice for building APIs that

allow users to connect and interact with cloud services. A REST API breaks

down a transaction to create a series of small modules. Each module addresses a

particular underlying part of the transaction.

A REST API explicitly takes advantage of HTTP methodologies defined by

the RFC 2616 protocol. The API uses GET to retrieve a resource, PUT to change

the state of or update a resource, which can be an object, file or block, POST to

create that resource, and DELETE to remove it. REST API calls are stateless.

Thats why it is useful in cloud applications. Stateless components can be freely

7

redeployed if something fails, and they can scale to accommodate load changes.

By using stateless protocol and standard operations, REST systems aim for fast

performance, reliability, and the ability to grow, by re-using components that can

be managed and updated without a↵ecting the system as a whole, even while it

is running. [5]

2.3 Common Devices and Softwares for Smart

Food Monitoring System

The design of IoT based Smart Food Monitoring System contains essential com-

ponents that plays intricate role in the system architecture. These components

carry out the logical execution, shows user interface and also gives the output to

the user. Technologies and instruments used in our system are explained below:

2.3.1 Raspberry Pi

The Raspberry Pi is a series of small single board computer. The processor speed

ranges from 700MHz to 1.4GHz for the Pi3 Model B+ [6]; on-board memory

ranges from 256MB to 1GB RAM. The Raspberry Pi may be operated with any

generic USB computer keyboard and mouse. It may also be used with USB

storage, USB to MIDI converters, and virtually any other device or component

with USB capabilities. Raspberry Pi has 40 dedicated interface pins. In all cases,

these include a UART, an I2C bus, a SPI bus with two chip selects, I2S audio,

3V3, 5V, and ground. The maximum number of GPIOs can theoretically be

indefinitely expanded by making use of the I2C or SPI bus. A Raspberry Pi is

shown in Figure 2.2

8

Figure 2.2: Raspberry Pi 3 B+

2.3.2 GPIO Ports

A powerful feature of the Raspberry Pi is the row of GPIO (general-purpose

input/output) pins along the top edge of the board. A 40-pin GPIO header is

found on all Raspberry Pi boards. Any of the GPIO pins can be designated

in software as an input or output pin and used for a wide range of purposes.

Two 5V pins and two 3V3 pins are present on the board, as well as a number

of ground pins (0V), which are not configurable. A GPIO pin designated as an

output pin can be set to high (3V3) or low (0V). A GPIO pin designated as an

input pin can be read as high (3V3) or low (0V). This is made easier with the

use of internal pull-up or pull-down resistors. Pins GPIO2 and GPIO3 have fixed

pull-up resistors, but for other pins this can be configured in software [7]. Figure

2.3 shows GPIO pinout of Raspberry Pi 3 B+

2.3.3 DHT22 Temperature and Humidity Sensor

DHT22 is a temperature and humidity sensor with 3 to 5V power and I/O. It

uses 2.5 mA max current during conversion while requesting data. DHT22 is

good for 0-100 % humidity readings with 2-5 % accuracy and good for -40 to

80 �C temperature readings 0.5 �C accuracy. It has a sampling rate of 0.5 Hz.

Figure 2.4 shows a DHT22 sensor.

9

Figure 2.3: Raspberry Pi 3 B+ GPIO Port

Figure 2.4: DHT22 Temperature and Humidity Sensor

10

2.3.4 Load Cell and HX711

A load cell is a transducer that is used to create an electrical signal whose mag-

nitude is directly proportional to the force being measured. A load cell usually

consists of four strain gauges in a Wheatstone Bridge configuration. The gauges

themselves are bonded onto a beam or structural member that deforms when

weight is applied. In most cases, four strain gauges are used to obtain maximum

sensitivity and temperature compensation. HX711 is a precision 24-bit analog

to-digital converter (ADC) designed for weigh scales and industrial control appli-

cations to interface directly with a bridge sensor. The input multiplexer selects

either Channel A or B di↵erential input to the low-noise programmable gain

amplifier (PGA). Channel A can be programmed with a gain of 128 or 64, corre-

sponding to a full-scale di↵erential input voltage of 20mV or 40mV respectively,

when a 5V supply is connected to AVDD analog power supply pin. Channel B

has a fixed gain of 32. The HX711 load cell amplifier is used to get measurable

data out from a load cell and strain gauge. Diagram of HX711 Amplifier is shown

in Figure 2.5

Figure 2.5: HX711 ADC Load Cell Amplifier

2.3.5 Node.js

Node is an asynchronous event driven JavaScript runtime, which is designed to

build scalable network applications. Node is similar in design to, and influenced

by, systems like Rubys Event Machine. Node takes the event model a bit further.

It presents an event loop as a runtime construct instead of as a library. In

other systems there is always a blocking call to start the event-loop. HTTP is

a first class citizen in Node, designed with streaming and low latency in mind.

This makes Node well suited for the foundation of a web library or framework.

11

Node.js shines in real-time web applications employing push technology over web

sockets [8].

2.3.6 MongoDB

MongoDB is a free and open-source cross-platform document-oriented database

program. Classified as a NoSQL database program, MongoDB uses JSON-like

documents with schemata. MongoDB is developed by MongoDB Inc., and is

published under a combination of the Server Side Public License and the Apache

License. MongoDB supports field, range query, and regular expression searches.

Queries can return specific fields of documents and also include user-defined

JavaScript functions. Queries can also be configured to return a random sam-

ple of results of a given size. MongoDB provides high availability with replica

sets. A replica set consists of two or more copies of the data. Each replica set

member may act in the role of primary or secondary replica at any time. All

writes and reads are done on the primary replica by default. Secondary replicas

maintain a copy of the data of the primary using built-in replication. When a

primary replica fails, the replica set automatically conducts an election process

to determine which secondary should become the primary [9].

2.3.7 Socket.IO

Socket.IO is a JavaScript library for realtime web applications. It enables real-

time, bi-directional communication between web clients and servers. It has two

parts: a client-side library that runs in the browser, and a server-side library

for Node.js. Both components have a nearly identical API. Like Node.js, it is

event-driven. Socket.IO primarily uses the WebSocket protocol with polling as

a fallback option, while providing the same interface. Although it can be used

as simply a wrapper for WebSocket, it provides many more features, including

broadcasting to multiple sockets, storing data associated with each client, and

asynchronous I/O [10].

12

2.3.8 Python

Python is an interpreted high level programming language for general purpose

programming. Python features a dynamic type system and automatic memory

management. It supports multiple programming paradigm, including object-

oriented, imperative, functional and procedural, and has a large and compre-

hensive standard library. Python provides good support for programming the

Raspberry Pi and provides well documented libraries for interfacing with various

sensors connected through the GPIO ports [11].

2.3.9 Swift

Swift is a powerful and intuitive programming language for macOS, iOS. From

its earliest conception, Swift was built to be fast. Using the incredibly high-

performance LLVM compiler, Swift code is transformed into optimized native

code that gets the most out of modern hardware. Swift is the result of the

latest research on programming languages, combined with decades of experience

building Apple platforms. Named parameters brought forward from Objective-C

are expressed in a clean syntax that makes APIs in Swift even easier to read and

maintain. Some of the new features of are closures, tuples, generics, structs that

support methods, extensions and protocols, functional programming patterns etc.

[12]

2.4 Related Work

Many studies have been done in this sector in last few years. Most of the studies

only tried to monitor the temperature or check other internal environment factors.

Very few works are done to establish an active food inventory monitoring system.

Now we will explore some of the works done previously. We will also try to figure

out strength, opportunities and limitation of their work.

13

2.4.1 A Food Monitoring System Based on Bluetooth Low

Energy and Internet of Things

In 2017 Mr. A. Venkatesh et al. [13] tried to the make a food monitoring system

using temperature and VOC sensor. They identified that many food poisoning

diseases take place due to improper food refrigeration. So they housed a VOC

gas sensor for monitoring the food condition. But due to complexity of biological

olfaction, the artificial olfactory system has non linearity characteristics. So it

is hard to detect accurate food condition using only one type of VOC sensor.

Their work also features a cloud database and web app for alerting the users. An

illustration of the block diagram of their system is shown in figure 2.6

Figure 2.6: Block Diagram for Food Monitoring System Based on Bluetooth Low

Energy and Internet of Things

2.4.2 iTrack: IoT Framework for Smart Food Monitoring

System

In 2016 Srivastava et al. [14] tried to make a food monitoring system which houses

temperature sensor, humidity sensor, light sensor, magnetic sensor, ultrasonic

sensor, air quality sensor. All the sensors are used to monitor di↵erent factors

of the food. Due to more sensors food quality evaluation is more accurate. But

the project doesnt contain any support for remote food monitoring. There is no

active database to store the readings so that users can draw to a point. Figure

2.7 illustrates the proposed solution for iTrack framework for food monitoring

system.

14

Figure 2.7: Proposed iTrack Solution

2.4.3 RFID Based Smart Fridge

A. Hachani, et al. made an attempt to design an automated IoT based smart

fridge [15]. They proposed a pilot design of a RFID based smart fridge. The fridge

can detect what kind of food is inside via sensing the RFID tags labeled with

each food. Then the fridge can monitor every thing and manage accordingly.

Embedding RFID provides an elegant solution to such a problem of assessing

whats inside in the fridge. RFID tags can uniquely identify each food inside to

refrigerator and tag them in the system. But the fact is that few if any food

items have RFID tags. Thats why that design fails to achieve its goal. The

design doesnt provide feature to turn on/o↵ remotely.

2.4.4 Design of Smart RFID Tag System for Food Poison-

ing Index Monitoring

In 2011 Chang Won Lee et al. [16] proposed a Smart RFID tag which is a

package of di↵erent sensors. Proposed system measures the temperature and

humidity using the smart RFID tag. The measured information can be calculated

according to food poisoning index with four grade, interest, caution, warning,

risk. The sensor readings are then evaluated through a food poisoning index.

The proposed system confirms usefulness through experiments. These systems

can be advantageous if it is integrated with IoT technology.

15

2.4.5 Samsung Family Hub Refrigerator

Samsung Electronics have developed the Samsung Family Hub Refrigerator [17]

which is one of the most noteworthy IoT smart refrigerator. It has vast function-

ality like large LCD display, internet connectivity, media access. The refrigerator

even comes with a camera to monitor what food items are there at a moment.

But the system didnt come with any automated food management mechanism to

assess the quantity of food. The refrigerator doesnt have any measures for active

food inventory monitoring. So users cant get notified when there is shortage of

food.

2.4.6 Design and Implementation of Food Monitoring Sys-

tem Based on WSN

Kong Xiangsheng et al. [18] made an attempt to design a remote wireless monitor-

ing system for food supply network based on Zigbee and RFID which are mainly

used to detect and gather food supply information and upload information to

monitoring center. They approached a low-complexity, low-cost, low-data-rate

and low-power-consumption design principles and food data clustering approach

for Wireless Sensor Networks(WSN). Main disadvantage of the the system is it

can’t work in the refrigerator and can’t be a all around solution for monitoring

food in the refrigerators. User have to use it manually to monitor desired food.

2.4.7 A Survey on Monitoring and Control system for

Food Storage using IoT

In 2017 Rohan et al. [19] proposed a Smart food monitoring unit which governs

control over various parameters causing decay or rotting of food materials, there-

fore ensuring appropriate quality of food during various atmospheric changes.

The is implemented as a whole system for the user to monitor the foods with

metrics such as temperature and weight. Main disadvantage is being a whole

system it can not be implemented on any other refrigerator or any cooling unit

other then its own cooling solution and also unable to provide visual feedback to

the user.

16

Chapter 3

System Architecture and Design

3.1 Architecture of the Smart Food Monitoring

System

The proposed Smart Food Monitoring System consists of five components. They

are real time food inventory monitoring, real time temperature monitoring, tem-

perature logging, visual feedback and user application. Logical Architecture of

the entire system is shown in Figure 3.1. The system consists of a sensor unit

where Raspberry Pi, all the sensors such as temperature sensor, load cell, camera

are housed. The whole system works on an ecosystem of these three module. The

user application requests actions, the server processes the action and the instruct

the Pi to approach for the next step. All the logical works are done in server side

of the system. The user application acts as an action input and result output

module, the server acts as the data and request processor unit and the sensor

unit works as the data input or collector unit. When monitoring configurations

are turned on, all the sensors, except the camera constantly gets reading from

the environment and processed them. The processed raw data is then sent to the

server.

Figure 3.1: System Architecture of the Smart Food Monitoring System

3.1.1 Server Architecture

The Server is the center of all the procedure. Both the user application and the

device application communicates with each other via the server. The server man-

ages all the requests and stores data according to the monitoring logic. Server

application is written using Node.js JavaScript framework. Server handles all

the event actions and responses to the requests via Express library. All requests

reaching the server are processed asynchronously which reduces the queuing time

18

for response. Server Server application listens to various POST, GET, PATCH,

DELETE requests via Express [20]. These are used to query for various device

informations from the server. On the other hand for gathering real-time output

from user to device or vice versa the server uses Socket based communication

which is made possible using Socket.IO library. The Server uses NoSQL database

which can store any sort of arbitrary type of data without any table. It is neces-

sary because the database requires to constantly store temperature data. Server

Architecture is illustrated in the figure 3.3. Main server process is distributed

into 5 components. The Main Thread is divided into request handler and lis-

tener. Request handler in subdivided into HTTP request handler and Socket

event handler. The Database handler maintains connection between the server

and the database. The Database Model is divided into Device Schema and User

Schema. There is a middleware for authentication which takes place on almost

all of the user request. Then there is the configurator file which configures which

port to listen.

Figure 3.2: Server Architecture

19

3.1.2 User Application Architecture

The user application is the medium for the user to interface with the whole

system. The user has to be connected to the server through network connection

so that the application can communicate with the device via server and query

various information from the server. The user can check device status and current

sensor readings via the application. The user application can be used to configure

the settings regarding the way the server responses to temperature and sensor

warnings. These parameters are then saved in the database of the device schema

which is checked every time the device provides a sensor entry. If the sensor

reading does not meet the given conditions of the user then the user is notified

from the server. These notifications are actually achieved through the application

notification handler, which queries for notification in every six seconds. The server

flags the sensor readings if the conditions are not met. If the application notifier

queries and gets a flagged reading then it triggers a notification in the users

device. The user can take actions according to the notification event. Figure 3.4

demonstrates the user application architecture.

Figure 3.3: User Application Architecture

3.1.3 Database Design

Database design is always an important part of database based system. A poorly

designed database can cause failure of the entire system. Smart Food Monitoring

System requires a database for device information and user information. Hence

we have to di↵erent models. One for the user and the other for devices. Our

20

system has two entity. The device and the user. The Device entity has attributes

like device id, serial number, configurations, current temperature, current weight,

logs. On the other hand the User has user id, user email, password, devices,

tokens. The Device entity and the user entity has a relationship named Monitors.

User and Device entities have many to many relationships. Figure 3.5 illustrates

the Entity Relationship diagram of the Smart Food Monitoring System (SFMS).

Figure 3.4: ER Diagram of SFMS

3.1.4 Sensor Unit Workflow

The Sensor Unit does not evaluate any sort of sensor data. All sort of processed

data received from the sensors are pushed to the server where the data is further

processed according to the monitoring logic and if appropriate the data is then

logged into the database for later inspection. The heart of the sensor unit is the

Raspberry Pi [21] which executes all the sensor reading according to schedule.

All data transmission of the Raspberry Pi is done using the servers REST api

and Socket.IO client events. These methods enable the sensor unit to transmit

sensor data in continuous manner. Both DHT22 and Load Cell needs a cool

down time before reading consecutive data. That’s why between each reading

there is a six seconds gap. Every six seconds the Raspberry Pi inquiries for

environmental readings if the monitoring setting is turned on. While listening

for any user request via server if there is a visual feedback request than the Pi

uses the fswebcam library to capture image using the camera and upon successful

image capture the data is encoded in base64 data and pushed to the server to

21

send back to the user application. Figure 3.2 illustrates the working procedure

of the sensor unit.

Figure 3.5: Workflow of the Sensor unit

22

Chapter 4

System Implementation

The entire system implementation consists of hardware for sensor reading, device

application for automating the sensor reading procedure, user application for

users to monitor and configure the system. The sensors are connected with Sensor

unit via serial cables. Device application sends the information to server over Wi-

Fi. The user application connects to the server over the local area network.

4.1 Implementation Tools

For deploying this project in software and hardware part, we need prerequisite to

be maintained. These are of three categories:

• Devices and Instruments Requirements

– Personal Computer (2.8 GHz Processor, 16 GB RAM)

– Raspberry Pi 3B+

– DHT22 Temperature Sensor

– HX711 ADC Amplifier with Load Cell

– Network Connection with Server PC

– USB Camera

– iOS Device for Client User

– Wi-Fi Router

– Power Adapter

• Software Requirements

– Visual Studio Code

– Xcode

– Terminal

– OS for Server Application Windows 7/8/8.1/10, MacOS, Linux (32/64

bit)

– For Client User Application minimum iOS 9

• Programming Language and Framework

– Node JS v10.9.0

– Python v2.7.15

– Socket.IO

– MongoDB

– JavaScript

– Swift 3

4.2 Circuit Connection

Circuit Diagram for Raspberry Pi and all the sensors is shown in Figure 4.1. For

all pin connections BCM pin numbering [8] convention was used. Here we have

connected DHT22 temperature and humidity sensors VCC pin to a 3v3 pin, DT

pin to GPIO 17, GND pin to a ground pin. We used an HX711 ADC load cell

amplifier to read the load cell outputs. HX711 has 4 pins connected to the Pi and

4 pins to the Load Cell. The DT pin of the amplifier is connected to the GPIO

9 pin and the SCK pin is connected to the GPIO 11 pin of the Raspberry Pi.

Remaining two pins are connected to any 3v3 VCC and ground. On the other

side Load cell red wire is connected to the E+ pin, black wire is connected to the

E- pin, white white is connected to the A+ pin and green wire is connected to

the A- pin of the amplifier. It should be noted that the data connection of the

HX711 is highly prone to outside noise which can lead to undesirable readings.

Thats why it is required to solder the connections of the HX711 and the Load

24

Cell before reading data. All circuits are connected using the male to female wire

connecters.

Figure 4.1: Sensor Unit circuit consisting Raspberry Pi and Sensors

4.3 Peripheral Connection

There is only one peripheral connection with the Raspberry Pi. We used the built

in USB 3.0 ports of the Pi to connect with the camera which is used to capture

still images of the inventories. Figure 4.2 shows the peripheral connection and

the power source connections of the Raspberry Pi.

Figure 4.2: Peripheral Connection with the Raspberry Pi

25

4.4 Application User Interface

Smart Food Monitoring System provides a mobile based user application. This

application enable users to know some vital information about the their refrigera-

tors. Users can check the current fridge temperature, current weight of inventory

contents, get notified if the inventory is below certain threshold and if temper-

ature is above specified temperature. The user application provides simple and

intuitive controls which can helps to use the application with ease and without

missing any feature. Figure 4.3 and 4.4 shows the Graphical User Interface of the

User Application.

Figure 4.3: User Application Interface 1

From both figures we can observe some of the application features provided

to the user. The application also provides server generated notifications which

are presented when application is in both active or idle state.

4.5 Experiments

We carried out some experiments with our proposed system to evaluate the per-

formance and throughput of the system. For accurate working evaluation our

experiments were done using a commercial refrigerator and most of the scenarios

were simulated to mimic real life situations.

26

Figure 4.4: User Application Interface 2

4.5.1 Experiment Environment

The experiment was carried out using the o�ce refrigerator of the Department of

Computer Science and Engineering, CUET. The refrigerator environment tem-

perature was fluctuating around 13�to 14�C. On software side of things virtual

environment for python was used to run third party packages on the Raspberry

Pi. The experiment was captured using a camera phone for video reference.

4.5.2 Experimental Setup

For successful experimentation it is required to situate sensors inside the refrig-

erator. The Smart Food Monitoring System sensors were attached to side rails

inside the refrigerator. The Load Sensor was setup on a metal platform on which

we can put any object to measure the weight of the object. The whole load cell

setup was housed on one of the refrigerator trays. The camera was situated on

a convenient place inside the refrigerator so that is can capture quite a view of

the whole tray. Due to condensation property all electronics were handled with

care when operated inside a refrigerator. It was best not to situate the sensors

inside the freezer where temperatures are freezing. Figure 4.5 shows the setup of

temperature sensor and camera inside the fridge and figure 4.6 shows the weight

sensor setup.

27

Figure 4.5: Camera and Temperature sensor setup

Figure 4.6: Weight Sensor Setup

28

The Server application which controls the whole system was running on a Mac-

Book Pro with Core i7 processor and 16 GB of RAM. The server wasnt hosted on

the internet. Hence localhost address was used to establish server connection be-

tween the Raspberry Pi and the User Mobile Device. For stability NPM package

manager was used to maintain the packages used in the server application. For

Raspberry Pi we used PIP package manager for python. The Device Application

was run on a Quad Core 64 bit processor at 1.4 GHz, consisting 1 GB of RAM

and a built in Wi-Fi modem. The experimental setup allowed us to collect the

following information:

• Real Time Temperature Monitoring

• Real Time Inventory Monitoring

• Visual Feedback of Inventory

• Graphical Representation of logged temperature data

• Simulation of inventory alert

• Simulation of temperature alert

4.5.3 Experiment Procedure

To carry out the experiment first we created a user account providing a email

address and password. Then we added a new device to be monitored from the

user application. To add a device it need to enter the serial number assigned to

it. The we provided a name to the device. When the device is up and running

we opened the device control panel by selecting it from ’My Devices’ option.

There we enabled the ’Temperature Monitor’ and ’Inventory Monitor’ option.

Initially the device read a temperature of 13.6�C and weight of 0 grams. Then

we set ’Warn if above (�C)’ option to 4.0 and ’Warn if below(gram)’ option to

250. Then we put a 500ml bottle filled with water on the weight sensor tray. We

observed how the system behaves in these situation and then removed the bottle

to see how it behaves in response. Figure 4.7 shows the initial setup parameters

on the user application.

29

Figure 4.7: Initial Setup parameters on User Application

4.5.4 Evaluation Methods

We have performed several tests in di↵erent place and environment. While testing

we have measured correctness, accuracy and performance. In this chapter we will

represent evaluation of our system. We can evaluate our system in the following

three methods:

Qualitative Evaluation

Qualitative methods is simply valuation using non-numerical data. It has ad-

vantage that the researcher is able to dig deep into the issue. For example, if a

statics show that X percent of people will vote for party A. This statics is quan-

titative information. It can answer the query that how much people will vote for

A but can’t answer the query that why those people will vote for A. Qualitative

methods try to find the answer of second query. However, qualitative evaluation

in a big sample is very di�cult.

30

Quantitative Evaluation

Quantitative evaluation is simply valuation using numeric data. Evaluation are

made using scientific tools and measurement. This method is suitable for large

sample space.

Subjective Evaluation

Subjective evaluation is an assessment or evaluation that is highly influenced by

person’s feelings. It is based on participant feedback. User of subjective eval-

uation can give a better overall picture of performance. However, subjective

evaluation has risk of biasing.

We will use quantitative evaluation method to evaluate our system.

4.5.5 Evaluation Measures

We will evaluate the system accuracy and performance according to its temper-

ature reading accuracy, weight sensing accuracy, notification responsiveness.

Temperature Reading Comparison

Evaluating the systems temperature sensing accuracy to check if for any given

moment the temperature sensor reading is actually authentic and good reading

by comparing its reading with a already established sensor.

Weight Reading Comparison

Evaluating the systems weight sensing accuracy to check if for any given mo-

ment the weight sensor reading is actually valid by comparing its reading with a

weighting scale.

Notification Responsiveness

Evaluating the systems responsiveness according to the awareness of the system

by surveying the time taken by the system to response to the event of removing

weights below to the warning limit.

31

4.5.6 Results

In this section the review of the system carried out through the experimental data

will be discussed. We will also discuss accuracy of some of our system sensors

and stat how reliable it can be in case of triggering notification events.

Temperature Reading Comparison

From table 4.1 we can observe the temperature read by commercial thermome-

ter and our system. These readings were taken over time with arbitrary time

intervals. We can also see the accuracy of the temperature sensor reading of our

system opposed to the fridge reading from the commercial thermometer which

is crucial for authentic result. From figure 4.8 we can observe the di↵erence of

temperature readings between our systems temperature sensor and an established

temperature sensor. From the graph we can observe that the temperature reading

di↵erence between the two sensors are not too apparent. Our system provides a

quite accurate temperature data hence it is reliable for the system for monitoring

with correct measurement of temperature. From 4.1 table we also get a calculated

average temperature reading accuracy of 96.8%.

Table 4.1: Temperature readings from commercial thermometer and our system

32

Figure 4.8: Comparison of Temperature readings over time

Weight Reading Comparison

From table 4.2 we can observe the weight amount read by commercial weighting

scale and our system taken over ten trials. These readings were taken with

di↵erent arbitrary weights and read on both our system and commercial solution.

The accuracy of the weight sensor reading of our system opposed to the the

commercial solution is used to calculate average weight reading accuracy of 97.6%.

Table 4.2: Weight readings from commercial weighting scale and our system

From figure 4.9 we can observe the di↵erence of weight readings between our

systems weight sensor and a weighting scale. From the figure we can observe that

the weight scale measurements and the systems load cell measurements are quiet

33

close. So our system provides a quite accurate weight data hence it is reliable

for the system for monitoring with correct measurement of weight and notify the

user.

Figure 4.9: Comparison of Weight readings over time

Notification Responsiveness

In table 4.3 response time for di↵erent notification responses are situated. From

these table we can calculate the average system response time. Calculating the

average response time we get a value of 35.8 seconds. So it can be stated that

our system can notify the user about inventory lacking in average of 36 seconds.

Table 4.3: Notification response time of the system

34

From figure 4.10 we can survey the time taken by the system to notify or warn

the user about inventory warnings. As the server logic looks for five consecutive

below threshold data and each readings takes place on the sensor unit exactly in

a interval of six seconds hence there is always a delay of thirty seconds present

on the system.

Figure 4.10: Notification response time of the system

Application Feature Outputs

To check the refrigerator inventory the option ”Load Camera Feedback” can be

selected. This provides the instant visual image of the inside storage of the

refrigerator. Figure 4.11 shows the camera feedback option in action. In figure

4.12 we see the notifications sent from the server warning user about temperature

and inventory. And in figure 4.13 we see the application representing graph

presentation of temperature reading history.

35

Figure 4.11: Load Camera Feedback option providing image of refrigerator inventory

Figure 4.12: Notification sent from the server to user about temperature and inven-

tory warning

36

Figure 4.13: Temperature Data option providing temperature history on graph rep-

resentation

4.6 Discussion

The main objective of this project is to develop a system that will help users

to monitor their daily food content inside the refrigerator and provide them an

additional control over their grocery. Aside from these the another objective of

the project is to reduce food wastage through the developed system. To meet this

goal, we have developed a prototype of food monitoring sensor unit, a real time

monitoring application for the users. Our prototype of Smart Food Monitoring

System was able to monitor food for a specific compartment of the refrigerator.

Although our prototype is not compatible of monitoring the whole fridge but an

extensive version of the system can be developed using the same procedures to

monitor the whole fridge.

37

Chapter 5

Conclusion

We have worked with real time IoT based technology with food monitoring for

refrigerators. Food monitoring is very important as it makes life bit easier by giv-

ing access to the whereabouts go the food inventory of the refrigerator and helps

to stop wastage of food due to prolong storage of food. In this chapter we will

present a overview of our system with its limitation and future recommendation.

5.1 Conclusion

The main objective of this project was to develop an IoT based system through

which user can monitor the food contents inside their refrigerator. To meet the

goal we developed a server that can manage and store data and response to users

according to their request. Then we developed a application for the sensor unit

device which can read environmental data through the transducers and process

them to human recognizable data. The data is then sent to the server where it

is stored and processed further for logical implementation. We also developed an

User application which can be used to monitor and get status of the refrigerator

in real time and configure when to notify in case inventory runs low or refrigerator

temperature gets high or get to see whats inside the fridge. We successfully met

most of our objectives like helping the user to decide for grocery, prevent from

access food stocking, reviewing whats inside the fridge or getting squinted if the

fridge is performing at its optimal performance. Users can reliably use our system

to monitor certain metrics. But there is also limitations. Our system cant provide

a full refrigerator monitoring solution as it is very tricky without the integration

of the system with the fridge that can only be possible by the manufacturer of

the fridge. As load cells provide unstable readings, which sometimes generates

values which are not desirable for the system procedure. It is also disadvantageous

for one camera to get a extensive look of the whole fridge from inside. Due to

condensation some sensor might not work the way they are intended to.

5.2 Future Recommendations

Very few work has been done previously in these sector. Hence there is a lot of

room for improvements. We have only worked in these project some of important

monitoring criteria. We also addressed some of the prominent problems. We also

tried to make our system simple as possible. Thats why we have rejected some

interesting ideas like using image detection, poisonous gas monitoring, RFID

tagging etc. So there are a lot of scope to work in the future. The future

recommendations are:

• Using AI to detect food from the imagery and notify the user whats inside

their fridge.

• Integrating RFID tag reader for identifying kind of food is currently inside

the fridge.

• Integrating Poisonous gas detecting sensors to evaluate the freshness of the

fridge environment.

• Integrating a food suggestion system based on there shelf life.

If we can implement this system in our daily life style, then it is possible to

prevent a lot of food wastage and give ourselves some assistance for doing the

right grocery and lead to a healthy food consumption.

39

References

[1] T. N. Kosmatos, E.A. and Boucouvalas, “Integrating rfids and smart

objects into a unified internet of things architecture,” Advances in

Internet of Things: Scientific Research, 2011. [Online]. Available:

http://dx.doi.org/10.4236/ait.2011.11002

[2] Food and Drug Administration, “Refrigerator Thermome-

ters: Cold Facts about Food Safety.” [Online]. Available:

https://www.fda.gov/food/resourcesforyou/consumers/ucm253954.htm

[3] R. Aggarwal and L. Das, “Rfid security in the context of internet of things,”

First International Conference on Security of Internet of Things. [Online].

Available: http://dx.doi.org/10.1145/2490428.2490435

[4] S. T. Somayya Madakam, R. Ramaswamy, “Internet of things (iot): A liter-

ature review.”

[5] World Wide Web Consortium, “Relationship to the world wide

web and rest architectures,” February 2004. [Online]. Available:

https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/relwwwrest

[6] Raspberry Pi Foundation, “Raspberry pi.” [Online]. Available:

https://www.raspberrypi.org

[7] Pinout.xyz, “The comprehensive gpio pinout guide for the raspberry pi.”

[Online]. Available: https://pinout.xyz/

[8] Joyent, “Node.js.” [Online]. Available: https://nodejs.org/

[9] MongoDB Inc., “Mongodb.” [Online]. Available:

https://www.mongodb.com/

40

[10] Socket.IO, “Socketio.” [Online]. Available: https://socket.io

[11] Guido van Rossum, “Python, high-level programming language.” [Online].

Available: https://www.python.org/

[12] Apple Inc., “Swift programming language.” [Online]. Available:

https://developer.apple.com/swift/

[13] S. A. M. K. Mr.A.Venkatesh, T.Saravanakumar, “A food monitoring sys-

tem based on bluetooth low energy and internet of things,” Int. Journal of

Engineering Research and Application.

[14] A. G. Amrita Srivastava, “itrack: Iot framework for smart food monitoring

system.”

[15] A. Hachani, I. Barouni, Z. B. Said, and L. Amamou, “Rfid based smart

fridge,” 2016 8th IFIP International Conference on New Technologies, Mo-

bility and Security (NTMS), 2016.

[16] C. W. Lee, N. T. Van, K. K. Jung, J. W. Kim, W. S. Choi, and K.-H. Eom,

“The design of smart rfid tag system for food poisoning index monitoring,”

The 2nd International Conference on Software Technology, 2013.

[17] S. E. America, “Samsung family hub smart refrigerator,” 2018.

[Online]. Available: https://www.samsung.com/us/explore/family-hub-

refrigerator/refrigerator/

[18] K. Xiangsheng, “Design and implementation of food monitoring system

based on wsn,” Advance Journal of Food Science and Technology, 2014.

[19] A. K. R. S. Rohan Wagle, Mayur Shah, “A survey on monitoring and control

system for food storage using iot.”

[20] Express, “Express a javascript framework.” [Online]. Available:

https://expressjs.com/

[21] V. Kumawat, S. Jain, V. Vashisth, N. Mittal, and B. Jangir, “Design of con-

trolling home appliance remotely using raspberry pi,” 2017 2nd International

Conference for Convergence in Technology (I2CT), 2017.

41

Appendices

42

Appendix A

Source Code

Listing A.1: server.js

r e qu i r e (’ . / c on f i g / con f i g ’) ;

const {ObjectID} = requ i r e (’mongodb ’) ;

const expre s s = r equ i r e (’ express ’) ;

const http = r equ i r e (’ http ’) ;

const socketIO = r equ i r e (’ socke t . io ’) ;

var bodyParser = r equ i r e (’ body�parser ’) ;

const = r equ i r e (’ lodash ’) ;

var {mongoose} = requ i r e (’ . / db/mongoose ’) ;

var {Device} = requ i r e (’ . / models / device ’) ;

var {User} = requ i r e (’ . / models / user ’) ;

var { authent i ca te , superAuthent icate } = requ i r e (’ . /

middleware/ authent i cate ’) ;

var app = expre s s () ;

var s e r v e r = http . Server (app) ;

var i o = socketIO (s e r v e r) ;

const port = proce s s . env .PORT | | 4000 ;

app . use (bodyParser . j s on ()) ;

//// Device p ings every 5 seconds

//// redFlag i s number o f va lue warning

const minTimeInterva lBetweenNot i f i cat ions = 30

43

/// in seconds

i o . on (’ connect ion ’ , (socke t) => {
con so l e . l og (’ connected to c l i e n t ’) ;

s ocke t . on (’ j o in ’ , (room , ca l l b a ck) => {
socket . j o i n (room) ;

con so l e . l og (’ socke t jo ined ’ , room) ;

c a l l b a ck (‘ j o i n ed s e r v i c e $ {room } ‘) ;
var redFlag = 0 ;

var redInvFlag = 0 ;

var las tTr iggerTime = 0 ;

var las t InvTr iggerTime = 0 ;

socket . on (’ logTemp ’ , (tempData , c a l l b a ck) => {
con so l e . l og (tempData . data)

Device . logCurrentTemp (tempData) . then ((dev i c e) => {
// conso l e . l og (dev i c e) ;

}) . catch (e r r => {
con so l e . l og (e r r) ;

})
Device . surveyTemperatureData (tempData) . then ((f l a g) => {
i f (f l a g) {
redFlag++;

} e l s e {
redFlag = 0 ;

Device . getDeviceID (tempData) . then ((dev i c e) => {
User . logWarning (dev i c e . id , f a l s e , ” temperature ”)

}) . catch ((e r r) => {
con so l e . l og (e r r) ;

c on so l e . l og (” deviceID query f a i l e d ”) ;

}) ;
}
}) . then (() => {
const currentTime = Date . now()

44

i f (redFlag > 4) {
//// Reads a t l e a s t 5 warnings be f o r e

t r i g g e r i n g n o t i f i c a t i o n

i f (currentTime � l a s tTr iggerTime > (

minTimeInterva lBetweenNot i f i cat ions ⇤ 1000)) {
con so l e . l og (”⇤⇤⇤⇤warning temp above l im i t ”) ;

Device . getDeviceID (tempData) . then ((dev i c e) => {
User . logWarning (dev i c e . id , true , ”

temperature ”)

}) . catch ((e r r) => {
con so l e . l og (e r r) ;

c on so l e . l og (” deviceID query f a i l e d ”) ;

}) ;
l a s tTr iggerTime = currentTime ;

} e l s e {
con so l e . l og (”⇤⇤⇤⇤⇤ not now”) ;

}
}
}) . catch ((f l a g) => {
i f (f l a g) {
redFlag = 0 ;

Device . getDeviceID (tempData) . then ((dev i c e) => {
User . logWarning (dev i c e . id , f a l s e , ” temperature ”)

}) . catch ((e r r) => {
con so l e . l og (e r r) ;

c on so l e . l og (” deviceID query f a i l e d ”) ;

}) ;
c on so l e . l og (”⇤⇤⇤⇤ coo l ”) ;
} e l s e {
con so l e . l og (”⇤⇤⇤⇤ not so coo l ”) ;

}
}) ;
Device . logTemperatureData (tempData) . then ((msg) => {

45

con so l e . l og (msg , tempData . data) ;

c a l l b a ck (msg) ;

}) . catch ((e r r) => {
con so l e . l og (e r r) ;

c a l l b a ck (e r r) ;

}) ;
}) ;

socke t . on (’ warnInventry ’ , (invData) => {
con so l e . l og (invData . data)

Device . logCurrentWeight (invData) . then ((dev i ce) => {

}) . catch (e r r => {
con so l e . l og (e r r) ;

})
Device . surveyInventryData (invData) . then ((f l a g) => {
i f (f l a g) {
redInvFlag++;

} e l s e {
redInvFlag = 0 ;

Device . getDeviceID (invData) . then ((dev i ce) => {
User . logWarning (dev i c e . id , f a l s e , ”weight ”)

}) . catch ((e r r) => {
con so l e . l og (e r r) ;

c on so l e . l og (” deviceID query f a i l e d ”) ;

}) ;
}
}) . then (() => {
const currentTime = Date . now()

i f (redInvFlag > 4) {
i f (currentTime � l a s t InvTr iggerTime > (

minTimeInterva lBetweenNot i f i cat ions ⇤ 1000)) {
con so l e . l og (”⇤⇤⇤⇤warning invent ry below l im i t ”) ;

46

Device . getDeviceID (invData) . then ((dev i c e) => {
User . logWarning (dev i c e . id , true , ”weight ”)

}) . catch ((e r r) => {
con so l e . l og (e r r) ;

c on so l e . l og (” deviceID query f a i l e d ”) ;

}) ;
l a s t InvTr iggerTime = currentTime ;

} e l s e {
con so l e . l og (”⇤⇤⇤⇤⇤ not now”) ;

}

}
}) . catch ((f l a g) => {
i f (f l a g) {
redInvFlag = 0 ;

Device . getDeviceID (invData) . then ((dev i c e) => {
User . logWarning (dev i c e . id , f a l s e , ”weight ”)

}) . catch ((e r r) => {
con so l e . l og (e r r) ;

c on so l e . l og (” deviceID query f a i l e d ”) ;

}) ;
c on so l e . l og (”⇤⇤⇤⇤ ok inv ”) ;

} e l s e {
con so l e . l og (”⇤⇤⇤⇤ not ok inv ”) ;

}
}) ;
}) ;

socke t . to (room) . on (’ imageFetch ’ , (data) => {
socket . to (room) . emit (’ deviceImageFetch ’) ;

}) ;

socke t . to (room) . on (’ serverMonitorImage ’ , (data) => {

47

con so l e . l og (’⇤⇤⇤⇤⇤⇤ emit t ing f e t ched data ’) ;

socke t . to (room) . emit (’ c l i entImageFetch ’ , data) ;

}) ;

socke t . to (room) . on (’ temp contro l monitor ’ , (data , deviceID

) => {
Device . updateSet t ings (data , deviceID)

socket . to (room) . broadcast . emit (’ temp contro l monitor ’ ,

data) ;

}) ;

socke t . to (room) . on (’ t emp cont ro l th r e sho ld ’ , (data ,

deviceID) => {
Device . updateSet t ings (data , deviceID)

socket . to (room) . broadcast . emit (’ t emp cont ro l th r e sho ld ’ ,

data) ;

}) ;

socke t . to (room) . on (’ i nven t ry con t ro l mon i t o r ’ , (data ,

deviceID) => {
Device . updateSet t ings (data , deviceID)

socket . to (room) . broadcast . emit (’ i nven t ry con t ro l mon i t o r ’ ,

data) ;

}) ;

socke t . to (room) . on (’ i n v en t r y c on t r o l t h r e s ho l d ’ , (data ,

deviceID) => {
Device . updateSet t ings (data , deviceID)

socket . to (room) . broadcast . emit (’ i n v en t r y c on t r o l t h r e s ho l d

’ , data) ;

}) ;

}) ;

48

socket . on (’ d i sconnect ’ , () => {
con so l e . l og (’ Disconnected from c l i e n t ’) ;

}) ;
}) ;

app . post (’ / log ’ , (req , r e s) => {
Device . logTemperatureData (req . body) . then (() => {
r e s . s t a tu s (200) . send () ;

}) . catch (() => {
r e s . s t a tu s (400) . send () ;

}) ;
}) ;

/// Add Device to Master Device Li s t , i /p : n/a , payload : {
s e r i a l : ’1234567 ’} (Done)

app . post (’ / master ’ , superAuthent icate , (req , r e s) => {
var body = . p ick (req . body , [’ s e r i a l ’]) ;

var dev i c e = new Device ({
s e r i a l : body . s e r i a l

}) ;

dev i c e . save () . then ((d e t a i l s) => {
r e s . send (d e t a i l s) ;

} , e r r => {
r e s . s t a tu s (400) . send (e r r) ;

})
}) ;

/// Add Device to User Device Lis t , i /p : n/a , payload : {
s e r i a l : ’1234567 ’} (Done)

49

app . post (’ / device ’ , authent i ca te , (req , r e s) => {
var body = . p ick (req . body , [’ name ’ , ’ s e r i a l ’]) ;

Device . findOne ({
s e r i a l : body . s e r i a l

}) . then ((dev i c e) => {
r e turn User . v e r i f yDev i c e (req . user . id , dev i c e . i d) . then (()

=> {
r e turn Promise . r e s o l v e () ;

}) . catch (() => {
r e turn req . user . addDevice (dev i c e . id , body . name) . then ((

d ev i c e s) => {
r e turn Promise . r e s o l v e (d ev i c e s) ;

}) . catch (() => {
r e turn Promise . r e j e c t () ;

}) ;
}) ;
}) . then ((d ev i c e s) => {
i f (! d ev i c e s) {
User . f indById (req . user . i d) . then ((user) => {
r e s . send (user . d ev i c e s) ;

} , e r r => r e s . s t a tu s (405) . send (e r r)) ;

} e l s e {
r e s . send (dev i c e s) ;

}
}) . catch ((e r r) => {
r e s . s t a tu s (400) . send (e r r) ;

}) ;
}) ;

/// Get User Device Li s t , i /p : n/a , payload : n/a (

Done)

app . get (’ / device ’ , authent i ca te , (req , r e s) => {

50

User . f indById (req . user . i d) . then ((user) => {
r e s . send (user . d ev i c e s) ;

} , e r r => r e s . s t a tu s (400) . send (e r r)) ;

}) ;

/// Get User Device Deta i l s , i /p : deviceID , payload : n/a

(Done)

app . get (’ / dev i c e / : id ’ , authent i ca te , (req , r e s) => {
var id = req . params . id ;

User . v e r i f yDev i c e (req . user . id , id) . then (() => {
r e turn Device . f indOne ({ i d : id }) ;
}) . then ((dev i c e) => {
i f (! dev i c e) r e turn r e s . s t a tu s (404) . send () ;

r e s . send ({ dev i ce }) ;
}) . catch (e r r => r e s . s t a tu s (e r r) . send ()) ;

}) ;

/// Remove Device from User Device Lis t , i /p : deviceID ,

payload : n/a (Done)

app . d e l e t e (’ / dev i c e / : id ’ , authent i ca te , (req , r e s) => {
var id = req . params . id ;

i f (! ObjectID . i sVa l i d (id)) r e turn r e s . s t a tu s (404) . send () ;

req . user . removeDevice (id) . then (() => {
User . f indById (req . user . i d) . then ((user) => {
r e s . send (user . d ev i c e s) ;

} , e r r => r e s . s t a tu s (400) . send (e r r)) ;

}) . catch ((e r r) => {
r e s . s t a tu s (400) . send (e r r) ;

}) ;
}) ;

51

app . get (’ / n o t i f i c a t i o n / : type / : id ’ , authent i ca te , (req , r e s

) => {
var entryID = req . params . id ;

var type = req . params . type

i f (! ObjectID . i sVa l i d (entryID)) re turn r e s . s t a tu s (404) . send

() ;

User . r e s e tA l e r t (entryID , type) . then (() => {
r e s . s t a tu s (200) . send (’ removed a l e r t ’) ;

}) . catch (e r r => {
r e s . s t a tu s (400) . send (e r r) ;

}) ;
}) ;

/// Update Device Se t t ing s , (Done)

app . patch (’/ dev i c e / p r e f / : id ’ , authent i ca te , (req , r e s) =>

{
var id = req . params . id ;

var body = . p ick (req . body , [’ set ’ , ’ monitoring ’ , ’

thresho ld ’]) ;

User . v e r i f yDev i c e (req . user . id , id) . then (() => {
r e turn Device . updateSet t ings (body , id) ;

}) . then ((dev i c e) => {
r e s . send (dev i c e) ;

}) . catch ((e r r) => {
r e s . s t a tu s (e r r) . send () ;

}) ;
}) ;

/// Create New User Account , i /p : n/a , payload : { emai l : ’

example@email . com ’ , password : ’123456 ’} (Done)

52

app . post (’ / user /new ’ , (req , r e s) => {
var body = . p ick (req . body , [’ email ’ , ’ password ’]) ;

var user = new User (body) ;

user . save () . then (() => {
r e turn user . generateAuthToken () ;

}) . then ((token) => {
r e s . header (’ x�auth ’ , token) . send ({ i d : use r . id , emai l :

u ser . emai l }) ;
}) . catch ((e r r) => r e s . s t a tu s (400) . send (e r r)) ;

}) ;

/// Get User Object , i /p : n/a , payload : n/a (Done)

app . get (’ / user /me’ , authent i ca te , (req , r e s) => {
r e s . send (req . user) ;

}) ;

/// Login User , i /p : n/a , payload : { emai l : ’ example@email .

com ’ , password : ’123456 ’} (Done)

app . post (’ / user / log in ’ , (req , r e s) => {
var body = . p ick (req . body , [’ email ’ , ’ password ’]) ;

User . f i ndByCredent i a l s (body . email , body . password) . then ((

user) => {
r e turn user . generateAuthToken () . then ((token) => {
r e s . header (’ x�auth ’ , token) . send ({ i d : use r . id , emai l :

u ser . emai l }) ;
}) ;
}) . catch ((e r r) => {
r e s . s t a tu s (400) . send (e r r) ;

}) ;
}) ;

53

/// Logout User , i /p : n/a , payload : n/a (Done)

app . d e l e t e (’ / user / logout ’ , authent i ca te , (req , r e s) => {
req . user . removeToken (req . token) . then (() => {
r e s . s t a tu s (200) . send () ;

}) . catch (() => {
r e s . s t a tu s (400) . send () ;

}) ;
}) ;

/// Logout Al l User , i /p : n/a , payload : n/a (Done)

app . d e l e t e (’ / user / logout / a l l ’ , authent i ca te , (req , r e s) =>

{
req . user . removeAllToken (req . token) . then (() => {
r e s . s t a tu s (200) . send () ;

}) . catch ((e r r) => {
r e s . s t a tu s (400) . send (e r r) ;

}) ;
}) ;

app . get (’ / dev i c e / s e l f / : s e r i a l ’ , (req , r e s) => {
var data = {
s e r i a l : req . params . s e r i a l

}
Device . getDeviceID (data) . then ((dev i c e) => {
r e s . send (dev i c e . c on f i g) ;

}) . catch ((e r r) => {
r e s . s t a tu s (400) . send (e r r) ;

}) ;
}) ;

54

s e r v e r . l i s t e n (port , () => {
con so l e . l og (‘ L i s t en ing on port ${port } ‘) ;
}) ;

module . expor t s = {app } ;
/// expor t ing r equ i r ed f o r t e s t i n g

Listing A.2: authenticate.js

var {User} = requ i r e (’ . . / models / user ’) ;

var bcrypt = r equ i r e (’ bcrypt ’) ;

var au then t i ca t e = (req , res , next) => {
var token = req . header (’ x�auth ’) ;

User . findByToken (token) . then ((user) => {
i f (! u se r) {

r e turn Promise . r e j e c t () ;

}
req . user = user ;

req . token = token ;

next () ;

}) . catch ((e r r) => {
r e s . s t a tu s (401) . send () ;

}) ;
} ;

var superAuthent icate = (req , res , next) => {
var keyOne = req . header (’ x�super�one ’) ;
var keyTwo = req . header (’ x�super�two ’) ;
v e r i f y (keyOne , keyTwo) . then ((msg) => {
next () ;

}) . catch ((e r r) => {
r e s . s t a tu s (401) . send (e r r) ;

55

}) ;
}

var v e r i f y = (one , two) => {
var hashOne = ’ $2b$10$4uCnOyoxC81YIYLiriPx2O5Tfr .

CCq0K44eZ8XDWIDmay18Tk5XDy ’ ;

var hashTwo = ’

$2b$10$nuxsBYTksm2ZC6r7UV82juefMtuD4M3kTiriEkI0NbEYauXkWJQFm

’ ;

r e turn new Promise ((r e so l v e , r e j e c t) => {
bcrypt . compare (one , hashOne , (err , r e s) => {

i f (r e s) {
bcrypt . compare (two , hashTwo , (err , r e s) =>

{
i f (r e s) {

r e s o l v e (’ Super

Authent i cat ion

Succe s s fu l ’) ;

} e l s e r e j e c t (’ Super

Authent i cat ion Fai led ’) ;

}) ;
} e l s e r e j e c t (’ Super Authent i cat ion Fai led ’) ;

}) ;
}) ;
}

module . expor t s = { authent i ca te , superAuthent icate } ;

Listing A.3: pinger.py

from thread ing import Thread

import RPi .GPIO as GPIO

import sys

56

from hx711 import HX711

import time

import os

import r eque s t s

from so ck e t IO c l i e n t n exu s import SocketIO ,

LoggingNamespace

import p i gp i o

p i = p igp i o . p i ()

import DHT22

senso r = DHT22. s en so r (pi , 17)

hx = HX711(9 , 11)

hx . s e t r e ad i ng f o rma t (”LSB” , ”MSB”)

hx . s e t r e f e r e n c e u n i t (322)

#1 wire 322

#2 wire 311 .7

hx . r e s e t ()

hx . t a r e ()

enableLog = Fal se

enab le Invent ry = Fal se

de f on connect () :

p r i n t (’ connected to se rver ’)

de f on j o i n (⇤ args) :
p r i n t (args [0])

de f on emit (⇤ args) :
p r i n t (’ got ack from s e r v e r ’+ args [0])

57

de f on tempControl (⇤ args) :
g l oba l enableLog

enableLog = args [0] [’ monitoring ’]

de f on invent ryContro l (⇤ args) :
g l oba l enab le Inventry

enab le Invent ry = args [0] [’ monitoring ’]

de f f e tch Image () :

p r i n t (’ sending image from device ’)

os . system (’ fswebcam �r 320x240 ��no�banner ��save /home/ p i

/ Fina l /monitor / image . jpg ’)

time . s l e e p (1)

data = open (’ image . jpg ’ , ’ rb ’) . read ()

encodedData = data . encode (” base64 ”)

socketIO . emit (’ serverMonitorImage ’ , encodedData)

socketIO . wait (seconds=3)

de f cleanAndExit () :

p r i n t (” Cleaning . . . ”)

GPIO. cleanup ()

sys . e x i t ()

s e r i a l = ’1 ’

baseURL = ’ http : / / 1 9 2 . 1 6 8 . 4 3 . 1 1 ’

port = 4000

u r l = baseURL + ’ : ’ + s t r (port) + ’/ dev i c e / s e l f / ’ + s e r i a l

c on f i g = r eque s t s . get (u r l)

enableLog = con f i g . j son () [’ temperature ’] [’ monitoring ’]

enab le Invent ry = con f i g . j s on () [’ weight ’] [’ monitoring ’]

socketIO = SocketIO (baseURL , port , LoggingNamespace)

58

socketIO . on (’ connect ’ , on connect)

socketIO . emit (’ j o in ’ , s e r i a l , on j o i n)

socketIO . wait (seconds=1)

socketIO . on (’ deviceImageFetch ’ , f e tch Image)

socketIO . wait (seconds=1)

de f thread TempEmit () :

whi l e 1 :

i f not enableLog :

p r i n t (’ monitor ing o f f ’)

time . s l e e p (5)

cont inue

s enso r . t r i g g e r ()

time . s l e e p (3)

socketIO . emit (’ logTemp ’ , {
’ s e r i a l ’ : s e r i a l ,

’ time ’ : time . time () ,

’ data ’ : s en so r . temperature () /1 .0

} , on emit)

socketIO . wait (seconds=2)

de f thread TempMonitor () :

whi l e 1 :

socketIO . on (’ temp contro l monitor ’ , on tempControl)

socketIO . wait (seconds=3)

de f thread InventryMonitor () :

whi l e 1 :

socketIO . on (’ i nven t ry con t ro l mon i t o r ’ , on invent ryContro l

)

socketIO . wait (seconds=3)

de f thread InventryEmit () :

59

whi le 1 :

i f not enab le Invent ry :

p r i n t (’ invent ry monitor ing o f f ’)

time . s l e e p (5)

cont inue

time . s l e e p (3)

socketIO . emit (’ warnInventry ’ , {
’ s e r i a l ’ : s e r i a l ,

’ time ’ : time . time () ,

’ data ’ : i n t (round (hx . ge t we ight (5)))

})
hx . power down ()

hx . power up ()

socketIO . wait (seconds=2)

i f name == ” ma in ” :

thread temp = Thread (t a r g e t= thread TempEmit)

thread temp . s t a r t ()

thread tempMon = Thread (t a r g e t= thread TempMonitor)

thread tempMon . s t a r t ()

th r ead inven t ry = Thread (t a r g e t= thread InventryEmit)

th r ead inven t ry . s t a r t ()

thread inventryMon = Thread (t a r g e t=

thread InventryMonitor)

thread inventryMon . s t a r t ()

Listing A.4: AppDelegate.swift

//

60

// AppDelegate . sw i f t

// Monitor

//

// Created by Arjon Das on 9/29/18.

// Copyright 2018 Arjon Das . Al l r i g h t s r e s e rved .

//

import UIKit

import CoreData

ex tens i on UIViewControl ler {
func hideKeyboardWhenTappedAround () {
l e t tap : UITapGestureRecognizer = UITapGestureRecognizer (

t a r g e t : s e l f , a c t i on : #s e l e c t o r (UIViewControl ler .

dismissKeyboard))

tap . cancelsTouchesInView = f a l s e

view . addGestureRecognizer (tap)

}

@objc func dismissKeyboard () {
view . endEdit ing (t rue)

}
}

@UIApplicationMain

c l a s s AppDelegate : UIResponder , UIAppl i cat ionDelegate {

var window : UIWindow?

l e t s e r i a l = ”1”

l e t u r l = Bundle . main . i n f oD i c t i ona ry ! [” Server IP ”] as !

S t r ing

l e t socke t = Socket ()

61

var t imer = 0

l e t mainStoryBoard = UIStoryboard (name : ”Main” , bundle :

n i l)

var d i spatch : DispatchQueue = DispatchQueue . main

var i sAc t i v e : Bool = true

var v i ewCont ro l l e r s : [UIViewControl ler] !

var menuViewController : MenuViewController !

var s i gn InViewContro l l e r : S ignInViewContro l l e r !

var dev i ceViewContro l l e r : DeviceViewContol ler !

var pane lViewContro l l e r : PanelViewContro l l er !

var addDeviceViewControl ler : AddDeviceViewControl ler !

var p lo tViewContro l l e r : P lotViewContro l l e r !

func startAltMenuViewContro l ler () {
// p r i n t (”⇤⇤⇤⇤⇤⇤⇤⇤Showing Al te rnate Menu View

Cont r o l l e r ”)

v i ewCont ro l l e r s . append (menuViewController)

s e l f . window ? . rootViewContro l l e r ? . p r e s ent (

menuViewController , animated : true , complet ion : n i l)

}

func s ta r tA l tS i gn InVi ewCont ro l l e r () {
// p r i n t (”Token doesn ’ t e x i s t ”)

v i ewCont ro l l e r s . append (s i gn InViewCont ro l l e r)

s e l f . window ? . rootViewContro l l e r ? . p r e s ent (

s ignInViewContro l l e r , animated : true , complet ion : n i l)

}

func s ta r tA l tDev i c eVi ewCont ro l l e r () {

62

// p r i n t (”⇤⇤⇤⇤⇤⇤⇤⇤Launching Al te rnate Device L i s t ”)

v i ewCont ro l l e r s . append (dev i ceViewContro l l e r)

s e l f . window ? . rootViewContro l l e r ? . pre sentedViewContro l l e r ? .

p re s ent (dev iceViewContro l l e r , animated : true ,

complet ion : n i l)

}

func s ta r tA l tPane lV i ewCont ro l l e r (name : Str ing , id : S t r i ng)

{
// p r i n t (”⇤⇤⇤⇤⇤⇤⇤⇤⇤Showing Al te rnate De t a i l s View

Cont r o l l e r ”)

pane lViewContro l l e r . deviceID = id

pane lViewContro l l e r . deviceName = name

v i ewCont ro l l e r s . append (pane lViewContro l l e r)

dev i ceViewContro l l e r . p r e s ent (pane lViewContro l l er , animated

: true , complet ion : n i l)

}

func startAltAddDeviceViewContro l l e r () {
// p r i n t (” Launching Add Device ”)

v i ewCont ro l l e r s . append (addDeviceViewControl ler)

s e l f . window ? . rootViewContro l l e r ? . pre sentedViewContro l l e r ? .

p re s ent (addDeviceViewControl ler , animated : true ,

complet ion : n i l)

}

func s ta r tA l tP lo tV i ewCont ro l l e r (name : Str ing , id : S t r i ng)

{
p lo tViewContro l l e r . deviceID = id

p lo tViewContro l l e r . deviceName = name

v i ewCont ro l l e r s . append (p lo tViewContro l l e r)

pane lViewContro l l e r . p r e s ent (p lotViewContro l l e r , animated :

true , complet ion : n i l)

63

}

func d i sm i s s (v i ewCont ro l l e r : UIViewControl ler) {
v i ewCont ro l l e r . d i sm i s s (animated : true , complet ion : n i l)

v i ewCont ro l l e r s . removeLast ()

}

func app l i c a t i o n (app l i c a t i o n : UIAppl icat ion ,

didFinishLaunchingWithOptions launchOptions : [

UIApplicationLaunchOptionsKey : Any] ?) �> Bool {
v i ewCont ro l l e r s = [UIViewControl ler] ()

menuViewController = mainStoryBoard .

i n s t an t i a t eV i ewCon t r o l l e r (w i t h I d e n t i f i e r : ”

MenuViewController ”) as ! MenuViewController

s i gn InViewCont ro l l e r = mainStoryBoard .

i n s t an t i a t eV i ewCon t r o l l e r (w i t h I d e n t i f i e r : ”

S ignInViewContro l l e r ”) as ! S ignInViewContro l l e r

dev i ceViewContro l l e r = mainStoryBoard .

i n s t an t i a t eV i ewCon t r o l l e r (w i t h I d e n t i f i e r : ”

DeviceViewContro l l e r ”) as ! DeviceViewContol ler

pane lViewContro l l e r = mainStoryBoard .

i n s t an t i a t eV i ewCon t r o l l e r (w i t h I d e n t i f i e r : ”

Pane lViewContro l l er ”) as ! PanelViewContro l l er

addDeviceViewControl ler = mainStoryBoard .

i n s t an t i a t eV i ewCon t r o l l e r (w i t h I d e n t i f i e r : ”

AddDeviceViewControl ler ”) as ! AddDeviceViewControl ler

p lo tViewContro l l e r = mainStoryBoard .

i n s t an t i a t eV i ewCon t r o l l e r (w i t h I d e n t i f i e r : ”

PlotViewContro l l e r ”) as ! P lotViewContro l l e r

l e t n o t i f i c a t i o n S e t t i n g s = UIUse rNo t i f i c a t i onSe t t i n g s (

types : [. a l e r t , . sound] , c a t e g o r i e s : n i l)

UIAppl icat ion . shared . r e g i s t e rU s e rNo t i f i c a t i o n S e t t i n g s (

64

n o t i f i c a t i o n S e t t i n g s)

re turn t rue

}

func app l i c a t i o n (app l i c a t i o n : UIAppl icat ion , d idRece ive

n o t i f i c a t i o n : UILoca lNo t i f i c a t i on) {
s e l f . t akeAct ionWithNot i f i ca t i on (n o t i f i c a t i o n : n o t i f i c a t i o n

)

}

func takeAct ionWithNot i f i ca t i on (n o t i f i c a t i o n :

UILoca lNo t i f i c a t i on) {
// l e t l a s tV i ewCont ro l l e r = v i ewCont ro l l e r s . l a s t

// var message = ””

// i f (l a s tV i ewCont ro l l e r ? . i sKind (o f :

UIA l e r tCont ro l l e r . s e l f)) ! {
// message = (l a s tV i ewCont ro l l e r as !

UIA l e r tCont ro l l e r) . message ! + ”\n” + n o t i f i c a t i o n .

a lertBody !

// d i sm i s s (v i ewCont ro l l e r : l a s tV i ewCont ro l l e r !)

// } e l s e {
// message = n o t i f i c a t i o n . a lertBody !

// }
// l e t a l e r tC on t r o l l e r = UIAle r tCont ro l l e r (t i t l e : ”

Ale r t ! ! ” , message : message , p r e f e r r e dS t y l e : . a l e r t)

// l e t d i smis sAct ion = UIAlertAct ion (t i t l e : ”

Dismiss ” , s t y l e : . de fau l t , handler : n i l)

// a l e r tC on t r o l l e r . addAction (d i smi s sAct ion)

// v i ewCont ro l l e r s . l a s t ? . p re s ent (a l e r tCon t r o l l e r ,

animated : true , complet ion : n i l)

//// s e l f . window ? . rootViewContro l l e r ? .

pre sentedViewContro l l e r ? . p re s ent (a l e r tCon t r o l l e r ,

animated : true , complet ion : n i l)

65

l e t a l e r tV i ewCont ro l l e r = UIAl e r tCont ro l l e r (t i t l e : ” Ale r t

! ! ! ” , message : n o t i f i c a t i o n . alertBody , p r e f e r r e dS t y l e :

. a l e r t)

l e t d i smi s sAct ion = UIAlertAct ion (t i t l e : ”Dismiss ” , s t y l e :

. d e f au l t , handler : n i l)

a l e r tV i ewCont ro l l e r . addAction (d i smi s sAct ion)

l e t alertWindow = UIWindow(frame : UIScreen . main . bounds)

alertWindow . rootViewContro l l e r = UIViewControl ler ()

alertWindow . windowLevel = UIWindowLevelAlert + 1

alertWindow . makeKeyAndVisible ()

alertWindow . rootViewContro l l e r ? . p re s ent (

a l e r tV i ewCont ro l l e r , animated : true , complet ion : n i l)

}

func t r i g g e rN o t i f i c a t i o n (msg : (Str ing , S t r ing)) {
l e t l o c a l N o t i f i c a t i o n = UILoca lNo t i f i c a t i on ()

l o c a l N o t i f i c a t i o n . f i r eDa t e = NSDate (t imeIntervalS inceNow :

5) as Date

l o c a l N o t i f i c a t i o n . applicationIconBadgeNumber = 1

l o c a l N o t i f i c a t i o n . soundName =

UILocalNoti f icat ionDefaultSoundName

l o c a l N o t i f i c a t i o n . u s e r I n f o = [

”message ” : ”Device Ale r t ! ! ”

]

l o c a l N o t i f i c a t i o n . a lertBody = ”\(msg . 0) ! Devices : \(msg . 1)

”

UIAppl icat ion . shared . s c h edu l eLo c a lNo t i f i c a t i o n (

l o c a l N o t i f i c a t i o n)

}

func app l i c a t i onWi l lRe s i gnAct i v e (app l i c a t i o n :

UIAppl icat ion) {

66

// Sent when the app l i c a t i o n i s about to move from ac t i v e

to i n a c t i v e s t a t e . This can occur f o r c e r t a i n types o f

temporary i n t e r r up t i o n s (such as an incoming phone c a l l

or SMS message) or when the user qu i t s the app l i c a t i o n

and i t beg ins the t r a n s i t i o n to the background s t a t e .

// Use t h i s method to pause ongoing tasks , d i s a b l e t imers ,

and i n v a l i d a t e g raph i c s r ender ing c a l l b a c k s . Games

should use t h i s method to pause the game .

}

func appl icat ionDidEnterBackground (app l i c a t i o n :

UIAppl icat ion) {
// Use t h i s method to r e l e a s e shared re source s , save user

data , i n v a l i d a t e t imers , and s t o r e enough app l i c a t i o n

s t a t e in fo rmat ion to r e s t o r e your app l i c a t i o n to i t s

cur r ent s t a t e in case i t i s terminated l a t e r .

// I f your app l i c a t i o n supports background execut ion , t h i s

method i s c a l l e d in s t ead o f app l i ca t ionWi l lTerminate :

when the user qu i t s .

i sAc t i v e = f a l s e

app l i c a t i o n . beginBackgroundTask (withName : ” p ing ing ” ,

exp i ra t i onHand l e r : n i l)

p e r f o rmSe l e c to r (inBackground : #s e l e c t o r (p ing ing) , with :

n i l)

}

@objc func p ing ing () {
l e t d e f a u l t s = UserDefau l t s . standard

l e t token = de f a u l t s . ob j e c t (forKey : ”x�auth ”) as ? St r ing

i f token != n i l {
pr i n t (” background ping ing ”)

socket . p ing ing ()

}

67

i f ! i sAc t i v e {
s l e e p (6)

pe r f o rmSe l e c to r (inBackground : #s e l e c t o r (p ing ing) , with :

n i l)

} e l s e {
r e turn

}
}

@objc func check ing () {
l e t d e f a u l t s = UserDefau l t s . standard

l e t token = de f a u l t s . ob j e c t (forKey : ”x�auth ”) as ? St r ing

i f token != n i l {
pr i n t (” foreground ping ing ”)

socket . p ing ing ()

}
i f i sAc t i v e {
d i spatch . asyncAfter (dead l ine : . now() + . seconds (6) ,

execute : {
s e l f . perform(# s e l e c t o r (s e l f . check ing))

})
} e l s e {
r e turn

}
}

func app l i cat ionWi l lEnterForeground (app l i c a t i o n :

UIAppl icat ion) {
// Cal led as part o f the t r a n s i t i o n from the background to

the a c t i v e s t a t e ; here you can undo many o f the

changes made on en t e r i ng the background .

i sAc t i v e = true

}

68

func appl icat ionDidBecomeActive (app l i c a t i o n :

UIAppl icat ion) {
// Restart any ta sk s that were paused (or not yet s t a r t ed)

whi l e the app l i c a t i o n was i n a c t i v e . I f the app l i c a t i o n

was p r ev i ou s l y in the background , op t i o n a l l y r e f r e s h

the user i n t e r f a c e .

perform(# s e l e c t o r (check ing))

}

func app l i ca t ionWi l lTerminate (app l i c a t i o n : UIAppl icat ion

) {
// Cal led when the app l i c a t i o n i s about to terminate . Save

data i f appropr i a t e . See a l s o

appl icat ionDidEnterBackground : .

// Saves changes in the app l i c a t i on ’ s managed ob j e c t

context be f o r e the app l i c a t i o n te rminate s .

s e l f . saveContext ()

}

// MARK: � Core Data s tack

@ava i lab l e (iOS 10 . 0 , ⇤)
l a zy var p e r s i s t en tCon ta i n e r : NSPers i s tentConta iner = {
/⇤
The p e r s i s t e n t conta ine r f o r the app l i c a t i o n . This

implementation

c r e a t e s and r e tu rn s a conta iner , having loaded the s t o r e

f o r the

app l i c a t i o n to i t . This property i s op t i ona l s i n c e the re

are l e g i t ima t e

e r r o r c ond i t i on s that could cause the c r e a t i on o f the

s t o r e to f a i l .

69

⇤/
l e t con ta ine r = NSPers i s tentConta iner (name : ”Monitor ”)

con ta ine r . l o adPe r s i s t e n t S t o r e s (complet ionHandler : { (

s t o r eDe s c r i p t i on , e r r o r) in

i f l e t e r r o r = e r r o r as NSError? {
// Replace t h i s implementation with code to handle the

e r r o r app rop r i a t e l y .

// f a t a lE r r o r () causes the app l i c a t i o n to generate a

crash log and terminate . You should not use t h i s

func t i on in a sh ipp ing app l i c a t i on , although i t may

be u s e f u l dur ing development .

/⇤
Typica l r ea sons f o r an e r r o r here i n c l ude :

⇤ The parent d i r e c t o r y does not ex i s t , cannot be

created , or d i s a l l ow s wr i t i ng .

⇤ The p e r s i s t e n t s t o r e i s not a c c e s s i b l e , due to

pe rmi s s i on s or data p r o t e c t i on when the dev i c e

i s locked .

⇤ The dev i ce i s out o f space .

⇤ The s t o r e could not be migrated to the cur r ent

model v e r s i on .

Check the e r r o r message to determine what the

ac tua l problem was .

⇤/
f a t a lE r r o r (” Unresolved e r r o r \(e r r o r) , \(e r r o r .

u s e r I n f o) ”)

}
})
r e turn conta ine r

} ()

// MARK: � Core Data Saving support

70

func saveContext () {
i f #av a i l a b l e (iOS 10 . 0 , ⇤) {
l e t context = pe r s i s t en tCon ta i n e r . viewContext

i f context . hasChanges {
do {

t ry context . save ()

} catch {
// Replace t h i s implementation with code to handle

the e r r o r app rop r i a t e l y .

// f a t a lE r r o r () causes the app l i c a t i o n to generate

a crash log and terminate . You should not use

t h i s f unc t i on in a sh ipp ing app l i c a t i on ,

a lthough i t may be u s e f u l dur ing development .

l e t n s e r r o r = e r r o r as NSError

f a t a lE r r o r (” Unresolved e r r o r \(n s e r r o r) , \(n s e r r o r
. u s e r I n f o) ”)

}
}
} e l s e {
// Fal lback on e a r l i e r v e r s i o n s

}

}

}

Listing A.5: Socket.swift

//

// Socket . sw i f t

// Monitor

//

// Created by Arjon Das on 10/12/18.

71

// Copyright 2018 Arjon Das . Al l r i g h t s r e s e rved .

//

import UIKit

import SocketIO

import Alamof i re

c l a s s Socket {
l e t manager = SocketManager (socketURL : URL(s t r i n g : Bundle .

main . ob j e c t (f o r In foDic t i onaryKey : ” Server IP ”) as !

S t r ing) ! , c on f i g : [. l og (f a l s e) , . compress])

var socke t : SocketIOCl ient

i n i t () {
socket = manager . d e f au l tSocke t

}

func Connect () {
socket . on (c l i en tEvent : . connect) { data , ack in

s e l f . s ocke t . emitWithAck (” j o i n ” , Bundle . main . ob j e c t (

f o r In foDic t i onaryKey : ” S e r i a l ”) as ! S t r i ng) . timingOut (

a f t e r : 1) { data in

p r i n t (data [0])

}
}
socket . connect ()

}

func ListenToControlTempSwitch (t ogg l e : UISwitch) {
socket . on (” temp contro l moni tor ”) { (data , ack) in

l e t c on t r o l s = data [0] as ! D ic t ionary <Str ing , Any>

i f c o n t r o l s [” s e t ”] as ! S t r ing == ” temperature ” {
t o gg l e . setOn (c on t r o l s [” monitor ing ”] as ! Bool , animated :

t rue)

}

72

}
}

func ListenToControlTempLimit (t e x tF i e l d : UITextField) {
socket . on (” t emp con t ro l th r e sho ld ”) { (data , ack) in

l e t c on t r o l s = data [0] as ! D ic t ionary <Str ing , Any>

i f c o n t r o l s [” s e t ”] as ! S t r ing == ” temperature ” {
t e x tF i e l d . t ex t = St r ing (c on t r o l s [” th r e sho ld ”] as ! Float)

}
}
}

func ListenToContro l InventrySwitch (t ogg l e : UISwitch) {
socket . on (” i nv en t r y con t r o l mon i t o r ”) { (data , ack) in

l e t c on t r o l s = data [0] as ! D ic t ionary <Str ing , Any>

i f c o n t r o l s [” s e t ”] as ! S t r ing == ”weight ” {
t o gg l e . setOn (c on t r o l s [” monitor ing ”] as ! Bool , animated :

t rue)

}
}
}

func ListenToContro l InventryLimit (t e x tF i e l d : UITextField)

{
socket . on (” i n v en t r y c on t r o l t h r e s h o l d ”) { (data , ack) in

l e t c on t r o l s = data [0] as ! D ic t ionary <Str ing , Any>

i f c o n t r o l s [” s e t ”] as ! S t r ing == ”weight ” {
t e x tF i e l d . t ex t = St r ing (c on t r o l s [” th r e sho ld ”] as ! Float)

}
}
}

func EmitTempToggle (deviceID : Str ing , va lue : Bool) {

73

l e t payload : Dic t ionary <Str ing , Any> = [

” s e t ” : ” temperature ” ,

”monitor ing ” : va lue

]

socket . emit (” temp contro l moni tor ” , payload , deviceID)

}

func EmitTempLimit (deviceID : Str ing , va lue : Float) {
l e t payload : Dic t ionary <Str ing , Any> = [

” s e t ” : ” temperature ” ,

” th r e sho ld ” : va lue

]

socket . emit (” t emp con t ro l th r e sho ld ” , payload , deviceID)

}

func EmitInventryToggle (deviceID : Str ing , va lue : Bool) {
l e t payload : Dic t ionary <Str ing , Any> = [

” s e t ” : ”weight ” ,

”monitor ing ” : va lue

]

socket . emit (” i nv en t ry con t r o l mon i t o r ” , payload , deviceID)

}

func EmitInventryLimit (deviceID : Str ing , va lue : Float) {
l e t payload : Dic t ionary <Str ing , Any> = [

” s e t ” : ”weight ” ,

” th r e sho ld ” : va lue

]

socket . emit (” i n v en t r y c on t r o l t h r e s h o l d ” , payload ,

deviceID)

}

func p ing ing () {

74

getDeviceWarningData (complet ion : {(temp , weight) in

i f temp != ”” {
pr i n t (” t r i g g e r i n g temp n o t i f i c a t i o n ”)

s e l f . t r i g g e rN o t i f i c a t i o n (msg : (” Temperature Ale r t ” , temp))

}
i f weight != ”” {
pr i n t (” t r i g g e r i n g weight n o t i f i c a t i o n ”)

s e l f . t r i g g e rN o t i f i c a t i o n (msg : (” Inventory Ale r t ” , weight))

}
})
}

func t r i g g e rN o t i f i c a t i o n (msg : (Str ing , S t r ing)) {
l e t l o c a l N o t i f i c a t i o n = UILoca lNo t i f i c a t i on ()

l o c a l N o t i f i c a t i o n . f i r eDa t e = NSDate (t imeIntervalS inceNow :

2) as Date

l o c a l N o t i f i c a t i o n . soundName =

UILocalNoti f icat ionDefaultSoundName

l o c a l N o t i f i c a t i o n . u s e r I n f o = [

”message ” : ”Test n o t i f i c a t i o n msg”

]

l o c a l N o t i f i c a t i o n . a lertBody = ”\(msg . 0) ! Devices : \(msg . 1)

”

UIAppl icat ion . shared . s c h edu l eLo c a lNo t i f i c a t i o n (

l o c a l N o t i f i c a t i o n)

}

func r e s e tN o t i f i c a t i o n (f o r entryID : Str ing , type : Str ing

, headers : HTTPHeaders) {
l e t u r l : S t r ing = Bundle . main . ob j e c t (f o r In foDic t i onaryKey

: ” Server IP ”) as ! S t r ing + ” n o t i f i c a t i o n /” + type +

”/” + entryID + ”/”

p r i n t (u r l)

75

Alamof i re . r eque s t (ur l , method : . get , headers : headers) .

v a l i d a t e () . r e spon s eS t r i ng { r e sponse in

switch response . r e s u l t {
case . s u c c e s s :

p r i n t (” Ale r t Reset Su c c e s s f u l ”)

case . f a i l u r e (l e t e r r) :

p r i n t (” Ale r t Reset Not Succe s s fu l , might a l e r t again ”)

p r i n t (e r r)

}
}
}

func getDeviceWarningData (complet ion : @escaping ((Str ing ,

S t r ing)) �> Void) {
l e t d e f a u l t s = UserDefau l t s . standard

l e t token = de f a u l t s . ob j e c t (forKey : ”x�auth ”) as ? St r ing

i f token == n i l {
r e turn

}
l e t headers : HTTPHeaders = [

”x�auth ” : token !

]

l e t u r l : S t r ing = Bundle . main . ob j e c t (f o r In foDic t i onaryKey

: ” Server IP ”) as ! S t r ing + ” dev i ce /”

var targetDevicesTemp : S t r ing = ””

var targetDevicesWeight : S t r i ng = ””

Alamof i re . r eque s t (ur l , method : . get , headers : headers) .

v a l i d a t e () . responseJSON { r e sponse in

switch response . r e s u l t {
case . s u c c e s s :

i f l e t responseObject = response . r e s u l t . va lue {
l e t d ev i c eL i s t : [D ic t i onary] = responseObject as ! [

Dict ionary<Str ing , Any>]

76

f o r dev i c e in d ev i c eL i s t {
l e t name = dev i ce [” name ”] as ! S t r i ng

l e t entryID = dev i ce [” i d ”] as ! S t r i ng

l e t warnTemp = dev i ce [”warnTemp”] as ! Bool

l e t warnWeight = dev i ce [” warnWeight ”] as ! Bool

i f warnTemp {
i f targetDevicesTemp == ”” {

targetDevicesTemp = targetDevicesTemp +

name

} e l s e {
targetDevicesTemp = targetDevicesTemp + ” ,

\(name) ”

}
s e l f . r e s e tN o t i f i c a t i o n (f o r : entryID , type : ”

temperature ” , headers : headers)

}
i f warnWeight {

i f targetDevicesWeight == ”” {
targetDevicesWeight = targetDevicesWeight

+ name

} e l s e {
targetDevicesWeight = targetDevicesWeight

+ ” , \(name) ”

}
s e l f . r e s e tN o t i f i c a t i o n (f o r : entryID , type : ”

weight ” , headers : headers)

}
}

}
complet ion ((targetDevicesTemp , targetDevicesWeight))

break

case . f a i l u r e :

targetDevicesTemp = ””

77

targetDevicesWeight = ””

complet ion ((targetDevicesTemp , targetDevicesWeight))

break

}
}
}

func fetchImage (imageView : UIImageView , l oad ing :

UIAct iv i ty Ind icatorView) {
l oad ing . startAnimat ing ()

socket . emit (” imageFetch ” , t rue)

socket . on (” c l i ent ImageFetch ”) { (data , ack) in

s e l f . s ocke t . o f f (” c l i ent ImageFetch ”)

l e t rawData = data [0] as ! S t r i ng

l e t imageData = NSData(base64Encoded : rawData , opt ions : .

ignoreUnknownCharacters)

l e t image = UIImage (data : imageData ! as Data)

imageView . contentMode = . s ca l eAspec tF i t

imageView . image = image

imageView . backgroundColor = UIColor . i n i t (red : 0 , green : 0 ,

b lue : 0 , alpha : 0 . 5)

imageView . isHidden = f a l s e

l oad ing . stopAnimating ()

}
l e t d i spatch : DispatchQueue = DispatchQueue . main

d i spatch . asyncAfter (dead l ine : . now() + . seconds (10) ,

execute : {
l oad ing . stopAnimating ()

s e l f . s ocke t . o f f (” c l i ent ImageFetch ”)

})
}
}

Listing A.6: PanelViewController.swift

78

//

// PanelViewContro l l e r . sw i f t

// Monitor

//

// Created by Arjon Das on 10/3/18.

// Copyright 2018 Arjon Das . Al l r i g h t s r e s e rved .

//

import UIKit

import Alamof i re

import SocketIO

c l a s s Pane lViewContro l l er : UIViewControl ler ,

UITextFie ldDelegate {
l e t appDelegate = UIAppl icat ion . shared . d e l e ga t e as !

AppDelegate

l e t socke t = Socket ()

@IBOutlet weak var nameLabel : UILabel !

@IBOutlet weak var load ing : UIAct iv i ty Ind icatorView !

@IBAction func tempLimit (sender : Any) {
l e t obj = sender as AnyObject

l e t i nputF i e ld = obj as ! UITextField

l e t input : S t r ing ? = inputF i e ld . t ex t

i f l e t inputValue = input , ! (input ? . isEmpty) ! {
l e t va lue = Float (inputValue)

socket . EmitTempLimit (deviceID : deviceID , va lue : (va lue) !)

}
}

@IBAction func plotTempData (sender : Any) {
(UIAppl icat ion . shared . d e l e ga t e as ! AppDelegate) .

79

s t a r tA l tP lo tV i ewCont ro l l e r (name : deviceName , id :

deviceID)

}

@IBOutlet weak var foodImage : UIImageView !

@IBOutlet weak var tempLimit : UITextField !

@IBAction func invLimit (sender : Any) {
l e t obj = sender as AnyObject

l e t i nputF i e ld = obj as ! UITextField

l e t input : S t r ing ? = inputF i e ld . t ex t

i f l e t inputValue = input , ! (input ? . isEmpty) ! {
l e t va lue = Float (inputValue)

socket . EmitInventryLimit (deviceID : deviceID , va lue : (va lue

) !)

}
}

@IBOutlet weak var invL imi t : UITextField !

@IBAction func tempSwitch (sender : Any) {
l e t button = sender as AnyObject

i f button . isOn {
socket . EmitTempToggle (deviceID : deviceID , va lue : t rue)

} e l s e {
socket . EmitTempToggle (deviceID : deviceID , va lue : f a l s e)

}
}

@IBOutlet weak var tempSwitch : UISwitch !

@IBAction func invSwitch (sender : Any) {

80

l e t button = sender as AnyObject

i f button . isOn {
socket . EmitInventryToggle (deviceID : deviceID , va lue : t rue)

} e l s e {
socket . EmitInventryToggle (deviceID : deviceID , va lue : f a l s e

)

}
}

@IBOutlet weak var invSwitch : UISwitch !

@IBAction func cameraLoad (sender : Any) {
socket . fetchImage (imageView : foodImage , l oad ing : l oad ing)

}

@IBAction func back (sender : Any) {
// s e l f . d i sm i s s (animated : true , complet ion : n i l)

p r i n t (” h e l l o i was d i smi s sed ”)

(UIAppl icat ion . shared . d e l e ga t e as ! AppDelegate) . d i sm i s s (

v i ewCont ro l l e r : s e l f)

}

var deviceID = ””

var deviceName = ””

var tokenGlobal = ””

ove r r i d e func viewWillAppear (animated : Bool) {
super . viewWillAppear (animated)

nameLabel . numberOfLines = 2

foodImage . i sHidden = true

foodImage . i sUse r In t e ra c t i onEnab l ed = true

load ing . hidesWhenStopped = true

load ing . stopAnimating ()

81

s e l f . hideKeyboardWhenTappedAround ()

tempLimit . d e l e ga t e = s e l f

invL imi t . d e l e ga t e = s e l f

nameLabel . t ex t = deviceName

hideImageWhenTappedAround ()

l e t d e f a u l t s = UserDefau l t s . standard

l e t token = de f a u l t s . ob j e c t (forKey : ”x�auth ”) as ? St r ing

i f token == n i l {
(UIAppl icat ion . shared . d e l e ga t e as ! AppDelegate) . d i sm i s s (

v i ewCont ro l l e r : s e l f)

} e l s e {
tokenGlobal = (token) !

}
l oadContro l s ()

socket . Connect ()

socket . ListenToControlTempSwitch (t ogg l e : tempSwitch)

socket . ListenToControlTempLimit (t e x tF i e l d : tempLimit)

socket . L i stenToContro l InventrySwitch (t ogg l e : invSwitch)

socket . L i s tenToContro l InventryLimit (t e x tF i e l d : invL imi t)

// socke t . p ing ing ()

}

// ove r r i d e func viewDidAppear (animated : Bool) {
// super . viewDidAppear (animated)

//

// }

func hideImageWhenTappedAround () {
l e t tap : UIGestureRecognizer = UITapGestureRecognizer (

t a r g e t : s e l f , a c t i on : #s e l e c t o r (hideImage))

tap . cancelsTouchesInView = f a l s e

foodImage . addGestureRecognizer (tap)

82

}

@objc func hideImage () {
foodImage . i sHidden = true

}

func textFie ldShouldReturn (t e x tF i e l d : UITextField) �>
Bool {

t e x tF i e l d . r e s i gnF i r s tResponder ()

r e turn t rue

}

func loadContro l s () {
l e t u r l : S t r ing = (UIAppl icat ion . shared . d e l e ga t e as !

AppDelegate) . u r l + ” dev i c e /” + deviceID

l e t headers : HTTPHeaders = [

”x�auth ” : tokenGlobal

]

Alamof i re . r eque s t (ur l , method : . get , headers : headers) .

v a l i d a t e () . responseJSON { r e sponse in

switch response . r e s u l t {
case . s u c c e s s :

i f l e t responseObject = response . r e s u l t . va lue {
l e t d ev i c e s : D ic t ionary = responseObject as ! Dict ionary<

Str ing ,Any>

l e t dev i ce : D ic t i onary = dev i c e s [” dev i c e ”] as ! Dict ionary

<Str ing ,Any>

l e t currentTemp : CGFloat = dev i ce [” currentTemp ”] as !

CGFloat

l e t currnetWeight : CGFloat = dev i ce [” currentWeight ”] as !

CGFloat

l e t c on f i g : D ic t i onary = dev i ce [” c on f i g ”] as ! Dict ionary<

Str ing ,Any>

83

l e t weight : D ic t ionary = con f i g [” weight ”] as ! Dict ionary<

Str ing ,Any>

l e t temperature : D ic t ionary = con f i g [” temperature ”] as !

Dict ionary<Str ing ,Any>

l e t tempMonitor : Bool = temperature [” monitor ing ”] as !

Bool

l e t tempVal : Float = temperature [” th r e sho ld ”] as ! Float

l e t weightMonitor : Bool = weight [” monitor ing ”] as ! Bool

l e t weightVal : Float = weight [” th r e sho ld ”] as ! Float

s e l f . nameLabel . t ex t = ”Temp: \(currentTemp . p r e c i s i o n (1) !)

C \n Weight : \(currnetWeight . p r e c i s i o n (1) !) gm”

s e l f . tempLimit . t ex t = St r ing (tempVal)

s e l f . i nvL imi t . t ex t = St r ing (weightVal)

s e l f . tempSwitch . isOn = tempMonitor

s e l f . invSwitch . isOn = weightMonitor

}
case . f a i l u r e :

p r i n t (” Error ”)

}
}
}
}

84

